Automated Optimization of a Composite Laminate

PRESENTED BY CHRISTIAN APARICIO

Goal: Use Nastran SOL 200 Optimization

Goal: Use Nastran SOL 200 Optimization

Before Optimization

• Weight: 1.60 lb_f·s²/in

Layup: [85/-85/60/-60/60/-60/85/-85]

Thickness: .0100 in

Plies are initially in failure

After Optimization

Weight: 1.04 lb_f⋅s²/in

Layup: [90/-90/0/0/0/0/90/-90]

• Thickness: .0065 in

Agenda

Details of the structural model

Optimization Problem Statement

Steps to use Nastran SOL 200 (Optimization)

- Convert a .bdf file to SOL 200
- Create:
 - Design Variables
 - Design Objective
 - Design Constraints
- Perform optimization with Nastran SOL 200

View optimization results

- Online Plotter
- Structural Results

Update the original structural model with optimized parameters

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

Details of the structural model

Allowed to translate in x and y

Details of the structural model

Optimization Problem Statement Design Variables

Design Variables

- x1: thickness of lamina 1
 - ∘ .001 < x1 < 10.
- 0
- x8: thickness of lamina 8
 - .001 < x8 < 10.
- x9: orientation of lamina 1
 - \circ -90 < x9 < 90
- 0
- x16: orientation of lamina 8
 - \circ -90 < x16 < 90
- Allowed angles: -90, -85, -80.... 80, 85, 90

Optimization Problem Statement Design Variable Linking

Design Variables

- All thicknesses will be equal
 - x2 = x1
 - x3 = x1
 - 0
 - x8 = x1
- The absolute value of laminas 1, 2, 7 and 8 will be equal
 - x15 = x9
 - x10, x16= x9 * -1
- The absolute value of laminas 3, 4, 5, 6
 - x13 = x11
 - \circ x12, x14 = x11 * -1

Optimization Problem Statement

Design Variables x1: T of lamina 1 of PCOMP 1 x2: T of lamina 2 x3: T of lamina 3 x4: T of lamina 4 x5: T of lamina 5 x6: T of lamina 6 x7: T of lamina 7 x8: T of lamina 8 .001 < xi < 10. x9: Orientation of lamina 1 of PCOMP 1 x10: Orientation of lamina 2 x11: Orientation of lamina 3 x12: Orientation of lamina 4 x13: Orientation of lamina 5 x14: Orientation of lamina 6 x15: Orientation of lamina 7 x16: Orientation of lamina 8 -90. < xi < 90. **Variable Linking** x2, x3, ..., x8 = x1x15 = x9x10, x16= -1.0 * x9 x13 = x11x12, x14 = -1.0 * x11

Responses

Displacements
Strains
Stresses

•••

Optimization Problem Statement Design Objective

r0: Minimize Weight

Optimization Problem Statement Design Constraints

r1: failure index of lamina 1

∘ r1 < .9

• • •

r8: failure index of lamina 8

∘ r8 < .9

Optimization Problem Statement

Design Variables x1: T of lamina 1 of PCOMP 1 x2: T of lamina 2 x3: T of lamina 3 x4: T of lamina 4 x5: T of lamina 5 x6: T of lamina 6 x7: T of lamina 7 x8: T of lamina 8 .001 < xi < 10. x9: Orientation of lamina 1 of PCOMP 1 x10: Orientation of lamina 2 x11: Orientation of lamina 3 x12: Orientation of lamina 4 x13: Orientation of lamina 5 x14: Orientation of lamina 6 x15: Orientation of lamina 7 x16: Orientation of lamina 8 -90. < xi < 90. **Variable Linking** x2, x3, ..., x8 = x1x15 = x9x10, x16= -1.0 * x9 x13 = x11x12, x14 = -1.0 * x11

Design Objective

r0: Minimize weight

Design Constraints

r1: Failure index of lamina 1 of element 1

•••

r8: Failure index of lamina 8 of element 1

r1, ... r8 < .9

Steps to use Nastran SOL 200 (Optimization)

- 1. Start with a .bdf or .dat file
- 2. Use the SOL 200 Web App to:
 - Convert the .bdf file to SQL 200.
 - Design Variables
 - Design Objective
 - Design Constraints
 - Perform optimization with Nastran SOL 200
- 3. Review optimization results
 - Online Plotter
 - Optimized structural results
- 4. Update the original model with optimized parameters

SOL 200 Web App Capabilities

Benefits

- 200+ error validations (real time)
- Web browser accessible

- Automated creation of entries (real time)
- Automatic post-processing

76 tutorials

Capabilities

Web Apps for SOL 200
Pre/post for MSC Nastran SOL 200.
Support for size, topology, topometry, topography and multi-model.

Machine Learning Web App Bayesian Optimization for nonlinear response optimization (SOL 400)

MSC Apex Post Processing Support View the newly optimized model after an optimization

Beams Viewer Web App
Post process 1D element forces,
including shear forces, moments,
torque and axial forces

Ply Shape Optimization Web App Spread plies optimally and generate new PCOMPG entries

Shape Optimization Web AppUse a web application to configure and perform shape optimization.

HDF5 Explorer Web App Create XY plots using data from the H5 file

Remote Execution Web App Run MSC Nastran jobs on remote Linux or Windows systems available on the local network

Generate PBMSECT and PBRSECT entries graphically

Stacking Sequence Web AppOptimize the stacking sequence of composite laminate plies

View Optimization Results Online Plotter

Final Message in .f06 RUN TERMINATED DUE TO HARD CONVERGENCE TO AN OPTIMUM AT CYCLE NUMBER = 10. AND HARD FEASIBLE DISCRETE DESIGN OBTAINED Objective

Design Cycle

INITIAL

Goal: Use Nastran SOL 200 Optimization

Initial Design

Weight: 1.60 lb_f⋅s²/in

Layup: [85/-85/60/-60/60/-60/85/-85]

Thickness: .0100 in

Plies are initially in failure

Optimized Design

Weight: 1.04 lb_f⋅s²/in

Layup: [90/-90/0/0/0/0/90/-90]

• Thickness: .0065 in

Update the original structural model with optimized parameters

Use the .pch file

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

