Vibration of a Cantilevered Beam (Turner's Problem), Nastran Optimization

PRESENTED BY CHRISTIAN APARICIO
Goal: Use Nastran SOL 200 Optimization

Minimize the weight of this structure while constraining the 1st natural frequency

Before Optimization
- Weight: 19.2 lbs.
- 1st Natural Frequency: 26 Hz

After Optimization
- Weight: 6.97 lbs.
- 1st Natural Frequency: 20 Hz

MSC Nastran Design Sensitivity and Optimization User’s Guide
Chapter 8 – Example Problems - Vibration of a Cantilevered Beam (Turner’s Problem)
Agenda

Details of the structural model

Optimization Problem Statement

Steps to use Nastran SOL 200 (Optimization)
 ◦ Convert a .bdf file to SOL 200
 ◦ Create:
 ◦ Design Variables
 ◦ Design Objective
 ◦ Design Constraints
 ◦ Perform optimization with Nastran SOL 200

View optimization results
 ◦ Online Plotter
 ◦ Structural Results

Update the original structural model with optimized parameters
Contact me

• Nastran SOL 200 training
• Nastran SOL 200 questions
• Structural optimization questions
• Access to the MSC Nastran SOL 200 Web App

christian@the-engineering-lab.com
Details of the structural model

Vibration of a Cantilevered Beam (Turner’s Problem)

This problem was originally published by M.J. Turner (see Reference 13). The problem is to design a minimum weight structure while constraining the fundamental natural frequency to be at or above 20Hz. The beam is symmetric about Z = 0 and made up of a shear web having top and bottom caps that are modeled with rod elements. Turner’s original design model consisted of piecewise linear bar cross-sectional areas and web thicknesses; however, we will just approximate this as a step function model with uniform cross-sectional rod elements and uniform thickness shear elements within each of three bays.

Figure 8-17 Cantilever Beam Vibration Model

MSC Nastran Design Sensitivity and Optimization User’s Guide
Chapter 8 – Example Problems – Vibration of a Cantilevered Beam (Turner’s Problem)
Optimization Problem Statement

Design Variables

- x1: A of PROD 201
- x2: A of PROD 202
- x3: A of PROD 203

\[.01 < x_1, x_2, x_3 < 100. \]

- x4: T of PSHELL 204
- x5: T of PSHELL 205
- x6: T of PSHELL 206

\[.0002 < x_4, x_5, x_6 < 2. \]

Responses (Outputs)

- Frequencies
- Mode shapes
-

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Optimization Problem Statement

Design Variables

- x_1: A of PROD 201
- x_2: A of PROD 202
- x_3: A of PROD 203

\[.01 < x_1, x_2, x_3 < 100. \]

- x_4: T of PSHELL 204
- x_5: T of PSHELL 205
- x_6: T of PSHELL 206

\[.0002 < x_4, x_5, x_6 < 2. \]

Design Objective, Equation

R0: Minimize $a_1 - 90$.
where,
a_1: weight of entire structure

Design Constraints

- r1: 1\(^{st}\) Natural frequency

\[20 \text{ Hz} < r1 \]
Optimization Problem Statement

1. Design Variables
 - x_1: A_1 | $0.01 < x_1 < 100.$
 - x_2: A_3 | $0.01 < x_2 < 100.$
 - x_3: A_3 | $0.01 < x_3 < 100.$
 - x_4: T_1 | $0.0002 < x_4 < 2.$
 - x_5: T_3 | $0.0002 < x_5 < 2.$
 - x_6: T_3 | $0.0002 < x_6 < 2.$

2. Design Objective, Equation
 - Minimize R_0
 - R_0: a_1 - 90. lbs.
 - a_1: Weight

3. Design Constraints
 - r_1: 1st Natural Frequency
 - $20.$ Hz $< r_1$
Steps to use Nastran SOL 200 (Optimization)

1. Start with a .bdf or .dat file

2. Use the MSC Nastran SOL 200 Web App to:
 - Convert the .bdf file to SOL 200
 - Design Variables
 - Design Objective
 - Design Constraints
 - Perform optimization with Nastran SOL 200

3. Review optimization results
 - Online Plotter
 - Optimized structural results

4. Update the original model with optimized parameters
MSC Nastran SOL 200 Web App

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
View Optimization Results
Online Plotter
Goal: Use Nastran SOL 200 Optimization

Before Optimization
- Weight: 19.2 lbs.
- 1st Natural Frequency: 26 Hz

After Optimization
- Weight: 6.97 lbs.
- 1st Natural Frequency: 20 Hz

MSC Nastran Design Sensitivity and Optimization User’s Guide
Chapter 8 – Example Problems - Vibration of a Cantilevered Beam (Turner’s Problem)
Update the original structural model with optimized parameters

Use the .pch file
Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural optimization questions
- Access to the MSC Nastran SOL 200 Web App

christian@the-engineering-lab.com