MSC Nastran Topology Optimization - Multidiscipline - Static Loading and Natural Frequency

PRESENTED BY CHRISTIAN APARICIO

Goal: Use Nastran SOL 200 Optimization

Before Optimization

• Mass: 9.73E-06

After Optimization

- Mass: 7.05E-06 (~25% mass reduction)
- Maximize stiffness
- Maximize first natural frequency

Agenda

Details of the structural model

Optimization Problem Statement

Steps to use Nastran SOL 200 (Optimization)

- Convert a .bdf file to SOL 200
- Create:
 - Design Regions/Variables
 - Design Objective
 - Design Constraints
- Perform optimization with Nastran SOL 200
- View optimization results
- Online Plotter
- Topology Optimization and Structural Results

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

Do you have questions? Email me: christian@ the-engineering-lab.com The SOL 200 Web App is now available through MSC**One**^{XT}. Contact your Hexagon sales representative for access.

Details of the structural model

Optimization Problem Statement

Why this Equation Constraint?

Why use this equation constraint?

- By minimizing RO,
 - The work done due to the load will be minimized => Increase in stiffness. As a1 or the work done gets larger, the term gets smaller
 - The 1st natural frequency will be maximized, as a2, the frequency, gets higher, the term becomes smaller

Why are the values normalized, i.e. dividing by the original values?

- The goal is to express the values in terms of 1.0
- Avoid the situation where the compliance is orders of magnitude larger than natural frequency

Design Equation Objective

RO: Minimize the sum of normalized compliance and normalized natural frequency

$$R_0 = \frac{a_1}{36.7} + \frac{86.4}{a_2}$$

a1: Compliance of SUBCASE 1a2: Natural frequency of mode 1 of SUBCASE 2

Steps to use Nastran SOL 200 (Optimization)

- 1. Start with a .bdf or .dat file
- 2. Use the SOL 200 Web App to:
 - Convert the .bdf file to SOL 200
 - Design Regions/Variables
 - Design Objective
 - Design Constraints
 - Perform optimization with Nastran SOL 200
- 3. Review optimization results
 - Online Plotter
 - Topology Optimization and Structural Results

SOL 200 Web App Capabilities

Compatibility

- Google Chrome, Mozilla Firefox or Microsoft Edge
- Windows and Red Hat Linux

• Installable on a company laptop, workstation or server. All data remains within your company.

The Post-processor Web App and HDF5 Explorer are free to MSC Nastran users.

Benefits

entries.

- REAL TIME error detection. 200+
- error validations.
- REALT TIME creation of bulk data •
- Web browser accessible
- Free Post-processor web apps
 - +80 tutorials

Web Apps

Web Apps for MSC Nastran SOL 200 Pre/post for MSC Nastran SOL 200. Support for size, topology, topometry, topography, multi-model optimization.

Shape Optimization Web App Use a web application to configure and perform shape optimization.

Machine Learning Web App Bayesian Optimization for nonlinear response optimization (SOL 400)

Remote Execution Web App Run MSC Nastran jobs on remote Linux or Windows systems available on the local network

PBMSECT Web App Generate PBMSECT and PBRSECT entries graphically

Dynamic Loads Web App Generate RLOAD1, RLOAD2 and DLOAD entries graphically

Ply Shape Optimization Web App Optimize composite ply drop-off locations, and generate new PCOMPG entries

Stacking Sequence Web App Optimize the stacking sequence of composite laminate plies

HDF5 Explorer Web App Create graphs (XY plots) using data from the H5 file

View Optimization Results Online Plotter

14.

Final Message in .f06

RUN TERMINATED DUE TO HARD CONVERGENCE TO AN OPTIMUM AT CYCLE NUMBER =

Objective

Normalized Constraints

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

Do you have questions? Email me: christian@ the-engineering-lab.com The SOL 200 Web App is now available through MSC**One**^{XT}. Contact your Hexagon sales representative for access.

Topology Optimization Workflows

Traditional Topology Optimization

Objective: Minimize Compliance (Maximize Stiffness) Constraint: Fractional Mass < .## (Target Mass)

Traditional Topology Optimization

Objective: Minimize Compliance (Maximize Stiffness) Constraint: Fractional Mass < .## (Target Mass)

Latest Topology Optimization

Objective: Minimize Fractional Mass (Minimize Mass) Constraint: Stress Constraint

Appendix

Appendix Contents

- Frequently Asked Questions
 - What are the design variables in Topology Optimization?
 - What is FRMASS or Fractional Mass?
 - What is compliance?
 - How can non-critical elements be removed from the design?

What are the design variables in Topology Optimization?

Topology

Consider the following topology optimization workflow.

- 1. A topology design region is selected.
 - 1 material
 - 2048 elements
- At the start of an optimization, each element is assigned its own material (stiffness and density).
 - 2048 materials
 - 2048 elements
- During the optimization, each element is given a topology variable x_i , where *i* is the element ID.
 - 2048 topology variables
 - The topology variable x_i controls the material density and stiffness of element *i* via these expressions.

• $p_i = p_0 \cdot x_i$

The penalty term ranges between 2-5 and is 3 by default. The topology variable varies between 0 and 1.

- After the topology optimization, the user must decide which elements to keep.
 - During the topology optimization, elements are not automatically removed. It is up to the user to decide which elements to keep after the optimization.

What are the design variables in Topology Optimization?

Many practitioners suggest keeping elements whose topology variable is in the range of 0.3 and 1.0, but do not explain the reasoning behind this suggestion.

The following is an attempt to explain the suggestion.

Suppose the original stiffness of the material is $E_0 = 200E9 Pa$.

- If x_i =0.3, then
 - *E_i* = 200E9 Pa * 0.3^3 = 5.4E9 Pa (5.4 GPa)
 - A topology variable value of x_i=0.3 yields a stiffness on the range of wood.
- If x_i =.0056, then
 - *E_i* = 200E9 Pa * .0056^3 = 3.5123E4
 Pa (35.123 kPa)
 - A topology variable value of x_i=.0056 yields a stiffness on the range of gelatin dessert, such as Jello.

Elements with a stiffness equivalent to Jello are negligible and may be removed from the design. Elements with a stiffness equivalent to wood are also candidates for removal. Those who use topology optimization long enough will find the suggestion of keeping elements between 0.3 and 1.0 is not absolute. With trial and error, some will find that ranges of 0.5 to 1.0 or 0.4 to 1.0 will also sometimes work. Given that the best range is often unknown, this makes topology optimization a *black art*.

What is FRMASS or Fractional Mass?

Since the topology variables can range between 0 and 1, the final mass will be some fraction of the original mass. This is known as the fractional mass or FRMASS.

FRMASS = $\frac{\sum p_i \cdot v_i}{\sum p_0 \cdot v_i}$

 p_0 : The original material density

 p_i : The optimized material density of the element ($p_i = p_0 \cdot x_i$)

 v_i : Volume of element

0) Suppose this is the optimization problem statement:

- Objective: Minimize compliance
- Constraint: FRMASS < .3

1) Prior to the optimization start, each topology variable is set to 0.3 so that all the material densities are reduced from 100% to 30% of p_0 . As a result, the fractional mass (FRMASS) is reduced from 1.0 to .3. This is done so the design constraint, FRMASS < .3, is initially satisfied.

2) During the optimization, each topology variable is allowed to range between 0 and 1.0, but the constraint on fractional mass (FRMASS < .3) should ultimately be satisfied.

What is compliance?

Compliance is defined in many ways

- "Compliance is simply the product of the displacement times the applied load" (MSC Nastran Design Sensitivity and Optimization User's Guide)
- For linear elastic solids, the work is twice the total strain energy

LEMENT-TYPE = HEX	XA *	TOTAL ENERGY OF ALL ELEM	ENTS IN PROBLEM =	9.111034E+03
JBCASE	1 *	TOTAL ENERGY OF ALL ELEM	ENTS IN SET -1 =	9.111034E+03
	ELEMENT-ID	STRAIN-ENERGY	PERCENT OF TO TOTAL	Strain Enorgy
	25	8.059148E+02	8.8455 IOLAI	Strain Lifergy
	32	8.059148E+02	8.8455	6.447318E+03
	33	8.059148E+02	8.8455	6.447318E+03
	40	8.059148E+02	8.8455	6.447318E+03
TYPE = HEX	KA SUBTOTAL	9.111034E+03	100.0000	
1 1 1 1				
	SUMMARY	OF DESIGN C	YCLE HISTORY	
	*******	*****	****	
		(HARD CONVERGENCE A	CHIEVED)	
	NUMBER OF	FINITE ELEMENT ANALYSES	COMPLETED 56	
	NUMBER OF NUMBER OF	FINITE ELEMENT ANALYSES FOPTIMIZATIONS W.R.T. APP	COMPLETED 56 ROXIMATE MODELS 55	
	NUMBER OF NUMBER OF	F FINITE ELEMENT ANALYSES F OPTIMIZATIONS W.R.T. APP	COMPLETED 56 ROXIMATE MODELS 55	
	NUMBER OF	F FINITE ELEMENT ANALYSES OFTIMIZATIONS W.R.T. APP	COMPLETED 56 ROXIMATE MODELS 55	
	NUMBER OF NUMBER OF OF	FINITE ELEMENT ANALYSES OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY	
	NUMBER OF NUMBER OF OE OBJECTIVE FROM	OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY 	MAXIMUM VALUE
CYCLE	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE	OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY 	MAXIMUM VALUE OF
CYCLE NUMBER	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OPTIMIZATION	OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY 	MAXIMUM VALUE OF CONSTRAINT
CYCLE NUMBER	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OPTIMIZATION	OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT
CYCLE NUMBER INITIAL	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OFTIMIZATION	F FINITE ELEMENT ANALYSES OFTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15
CYCLE NUMBER INITIAL	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OFTIMIZATION	FINITE ELEMENT ANALYSES OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15
CYCLE NUMBER INITIAL 1	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OFTIMIZATION 5.076533E+03	FINITE ELEMENT ANALYSES OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.32: Comp	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION 	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09
CYCLE NUMBER INITIAL 1 2	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03 5.721454E+03	F FINITE ELEMENT ANALYSES F OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.32: Comp 1.12000 LIVE	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION 6.163140E-01 iance -4.893855E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09 6.604279E-09
CYCLE NUMBER INITIAL 1 2	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03 5.721454E+03	F FINITE ELEMENT ANALYSES F OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.32: Comp 1.12000 LTOI	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION 6.163140E-01 4.893855E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09 6.604279E-09
CYCLE NUMBER INITIAL 1 2 3	NUMBER OF NUMBER OF OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03 5.721454E+03 4.220301E+03	FINITE ELEMENT ANALYSES OPTIMIZATIONS W.R.T. APP BJECTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.32: Comp 1.12Coorder	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION 6.163140E-01 -4.893855E-01 -5.848357E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09 6.604279E-09 1.000032E-08

What is compliance? Continued

The .f06 file reports the value of compliance and strain energy. The following applies if and only if minimizing the compliance is the design objective.

- 1. Make sure this statement is in the Case Control Section of the .bdf file. ESE(THRESH=.99)=ALL
- Search the .f06 file for the initial design's
 ELEMENT STRAIN ENERGI ES
- 3. Note the value of TOTAL ENERGY OF ALL ELEMENTS IN PROBLEM
- 4. Search the .f06 for the
 SUMMARY OF DESIGN C
 YCLE HISTORY
- 5. Note the value for OBJECTIVE FROM EXACT ANALYSIS for the INITIAL cycle number
- 6. The Compliance of 1.8222E4 is twice the TOTAL STRAIN ENERGY of 9.11E3.

EMENT-TYPE = HE	ха * То	TAL ENERGY OF ALL ELEM	ENTS IN PROBLEM =	9.111034E+03
JBCASE	1 * TO	TAL ENERGY OF ALL ELEM	ENTS IN SET -1 =	9.111034E+03
	ELEMENT-ID	STRAIN-ENERGY	PERCENT OF TOTAL	STRAIN-ENERGY-DENSITY
	25	8.059148E+02	8.8455	6.447318E+03
	32	8.059148E+02 8.059148E+02	0.0100	6.447318E+03
	40	8.059148E+02	8.8455	6.447318E+03
	10	010001102102	0.0100	0111/0102/00
TYPE = HE	XA SUBTOTAL	9.111034E+03	100.0000	
	********	*****	*****	*
	SUMMARY	OF DESIGN C	YCLE HISTORY	Y
	********	*****	******	*
		(HARD CONVERGENCE A	CHIEVED)	
	NUMBER OF F	INITE ELEMENT ANALYSES	COMPLETED 56	
	NUMBER OF F NUMBER OF C	INITE ELEMENT ANALYSES PTIMIZATIONS W.R.T. APP	COMPLETED 56 ROXIMATE MODELS 55	
	NUMBER OF F NUMBER OF C	INITE ELEMENT ANALYSES PTIMIZATIONS W.R.T. APP	COMPLETED 56 ROXIMATE MODELS 55	
	NUMBER OF E NUMBER OF C	TINITE ELEMENT ANALYSES PTIMIZATIONS W.R.T. APP	COMPLETED 56 ROXIMATE MODELS 55	
	NUMBER OF F NUMBER OF C OBJE	TINITE ELEMENT ANALYSES OPTIMIZATIONS W.R.T. APP	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY	
	NUMBER OF F NUMBER OF C OBJECTIVE FROM	OPTIMIZATIONS W.R.T. APP CTIVE AND MAXIMUM CONST OBJECTIVE FROM	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY 	MAXIMUM VALUE
CYCLE	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE	OBJECTIVE FROM	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY 	MAXIMUM VALUE OF
CYCLE NUMBER	NUMBER OF E NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION	OPTIMIZATIONS W.R.T. APP COLOR AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT
CYCLE NUMBER	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION	OPTIMIZATIONS W.R.T. APP CTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT
CYCLE NUMBER INITIAL	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION	TINITE ELEMENT ANALYSES OPTIMIZATIONS W.R.T. APP CONTINUE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15
CYCLE NUMBER INITIAL	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION	INITE ELEMENT ANALYSES PTIMIZATIONS W.R.T. APP CONTINUE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15
CYCLE NUMBER INITIAL 1	NUMBER OF F NUMBER OF O OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03	DESCRIPTIONS W.R.T. APP CONTINUE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.323096E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION -6.163140E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09
CYCLE NUMBER INITIAL 1	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03	CTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.323096E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION -6.163140E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09
CYCLE NUMBER INITIAL 1 2	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03 5.721454E+03	CTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.323096E+04 1.120504E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION -6.163140E-01 -4.893855E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09 6.604279E-09
CYCLE NUMBER INITIAL 1 2 3	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03 5.721454E+03 4.220301E+03	CTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.120504E+04 1.016538E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION -6.163140E-01 -4.893855E-01 -5.848357E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09 6.604279E-09 1.000032E-08
CYCLE NUMBER INITIAL 1 2 3	NUMBER OF F NUMBER OF C OBJECTIVE FROM APPROXIMATE OPTIMIZATION 5.076533E+03 5.721454E+03 4.220301E+03	CTIVE AND MAXIMUM CONST OBJECTIVE FROM EXACT ANALYSIS 1.822207E+04 1.323096E+04 1.120504E+04 1.016538E+04	COMPLETED 56 ROXIMATE MODELS 55 RAINT HISTORY FRACTIONAL ERROR OF APPROXIMATION -6.163140E-01 -4.893855E-01 -5.848357E-01	MAXIMUM VALUE OF CONSTRAINT -4.625929E-15 9.999972E-09 6.604279E-09 1.000032E-08

How can noncritical elements be removed from the design?

- Use the threshold to suppress noncritical elements
- The threshold means: 'Keep every element that has a topology variable value greater than the threshold'
- Recall from before:
 - 0 Topology variable values close to 0 are not critical to the design
 - 1 Topology variable values close to 1 are critical to the design

echnology Partne

