Workshop - Model Matching, Frequency Response

AN MSC NASTRAN SOL 200 TUTORIAL
Goal: Use Nastran SOL 200 Optimization

Correlate Experiment and FEA Results

Before Optimization

![Graph showing Transverse displacement at grid 1110 before optimization.]

After Optimization

![Graph showing Transverse displacement at grid 1110 after optimization.]

- INITIAL FEA Results
- FINAL FEA Results
- Experiment/Target Values
Dynamic Response Optimization

This example demonstrates structural optimization when the structural loads are frequency dependent. The system considered is a flat rectangular plate clamped on three edges and free along the fourth, as shown in Figure 8-21. The problem investigates minimization of the mean square response of the transverse displacement at the midpoint of the free edge, while constraining the volume of the structure (and hence, weight) to be equal to that of the initial design. A pressure loading with an amplitude of 1.0×10^6 Pa is applied across a frequency range of 20.0 to 200.0 Hz. A small amount of frequency-dependent modal damping has also been included.
Details of the structural model

Dynamic Response Optimization

This example demonstrates structural optimization when the structural loads are frequency dependent. The system considered is a flat rectangular plate clamped on three edges and free along the fourth, as shown in Figure 8.21. The problem investigates minimization of the mean square response of the transverse displacement at the midpoint of the free edge, while constraining the volume of the structure (and hence, weight) to be equal to that of the initial design. A pressure loading with an amplitude of \(1.0 \times 10^{-6}\) is applied across a frequency range of 20.0 to 200.0 Hz. A small amount of frequency-dependent modal damping has also been included.

![Pressure-Loaded Flat Plate](image)

Figure 8-21 Pressure-Loaded Flat Plate

MSC Nastran Design Sensitivity and Optimization User’s Guide
Chapter 8 - Example Problems - Dynamic Response Optimization

Node 1110

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Optimization Problem Statement

Design Objective, Equation

R0: Minimize

\[(b1 - 2.8384)^2 + (b2 - 0.2613)^2 + (b3 - 0.2182)^2\]

- b1: RM - T3 component of displacement at grid 1110 at frequency 50 Hz
- b2: RM - T3 component of displacement at grid 1110 at frequency 100 Hz
- b3: RM - T3 component of displacement at grid 1110 at frequency 164 Hz

Design Constraints

r1: Volume \[7.99 < r1 < 8.01\]

Design Constraints, Equation

SUBCASE 1

R1 = \[\left(\frac{b4 - 0.488338}{0.488338}\right)^2\] R1 < .01
R2 = \[\left(\frac{b5 - 0.018219}{0.018219}\right)^2\] R2 < .01
R3 = \[\left(\frac{b6 - 0.1845}{0.1845}\right)^2\] R3 < .01
R4 = \[\left(\frac{b7 - 0.022128}{0.022128}\right)^2\] R4 < .01
R5 = \[\left(\frac{b8 - 0.279055}{0.279055}\right)^2\] R5 < .01

- b4: RM - T3 component of displacement at grid 605 at frequency 50 Hz
- b5: RM - T3 component of displacement at grid 605 at frequency 84 Hz
- b6: RM - T3 component of displacement at grid 605 at frequency 171 Hz
- b7: RM - T3 component of displacement at grid 1105 at frequency 97 Hz
- b8: RM - T3 component of displacement at grid 1105 at frequency 173 Hz

SUBCASE 2

R6 = \[\left(\frac{b9 - 1.58019}{1.58019}\right)^2\] R6 < .01
R7 = \[\left(\frac{b10 - 0.140642}{0.140642}\right)^2\] R7 < .01
R8 = \[\left(\frac{b11 - 0.124761}{0.124761}\right)^2\] R8 < .01

- b9: RM - T3 component of displacement at grid 1110 at frequency 50 Hz
- b10: RM - T3 component of displacement at grid 1110 at frequency 100 Hz
- b11: RM - T3 component of displacement at grid 1110 at frequency 164 Hz

SUBCASE 3

R9 = \[\left(\frac{b12 - 0.522618}{0.522618}\right)^2\] R9 < .01
R10 = \[\left(\frac{b13 - 0.048008}{0.048008}\right)^2\] R10 < .01
R11 = \[\left(\frac{b14 - 0.042346}{0.042346}\right)^2\] R11 < .01

- b12: RM - T3 component of displacement at grid 1110 at frequency 50 Hz
- b13: RM - T3 component of displacement at grid 1110 at frequency 100 Hz
- b14: RM - T3 component of displacement at grid 1110 at frequency 164 Hz

Design Variables

x1: T of PSHELL 1
x2: T of PSHELL 2
x3: T of PSHELL 3
x4: T of PSHELL 4
x5: T of PSHELL 5
x6: T of PSHELL 6
x7: T of PSHELL 7
x8: T of PSHELL 8
x9: T of PSHELL 9
x10: T of PSHELL 10

\[.01 < x_i < 1.0\]
Optimization Problem Statement Continued

The plots on this page are for Subcase 1.
More Information Available in the Appendix

The Appendix includes information regarding the following:

- Manually Creating Responses
- How is error defined in this tutorial?
Contact me

• Nastran SOL 200 training
• Nastran SOL 200 questions
• Structural optimization questions
• Access to the MSC Nastran SOL 200 Web App

christian@ the-engineering-lab.com
Tutorial

PART A
Tutorial Overview

1. Start with a .bdf or .dat file
2. Use the MSC Nastran SOL 200 Web App to:
 - Convert the .bdf file to SOL 200
 - Design Variables
 - Design Objective
 - Design Constraints
 - Perform optimization with Nastran SOL 200
3. Plot the Optimization Results
4. Update the original model with optimized parameters

Special Topics Covered

Automatically Creating Hundreds of Design Variables - It may be the case that hundreds of design variables must be created. The Web App features a capability to automatically create and configure hundreds of design variables. Design variable lower and upper limits and discrete values can also be automatically set. This tutorial discusses the process of automatically creating multiple design variables.

Model Matching - The MSC Nastran SOL 200 Web App features a single table where the model matching problem can be defined. In the background, the necessary objective and constraints are automatically generated. In addition, plots comparing the initial, final and target values are auto generated.

Multi Subcase - Model matching is to be performed across multiple subcases. The necessary steps and configuration is outlined in this tutorial to perform model matching across multiple subcases.
MSC Nastran SOL 200 Web App

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Before Starting

1. Ensure the Downloads directory is empty in order to prevent confusion with other files.

- Throughout this workshop, you will be working with multiple file types and directories such as:
 - .bdf/.dat
 - nastran_working_directory
 - .f06, .log, .pch, .h5, etc.
- To minimize confusion with files and folders, it is encouraged to start with a clean directory.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Go to the User’s Guide

1. Click on the indicated link

- The necessary BDF files for this tutorial are available in the Tutorials section of the User’s Guide.

MSC Nastran SOL 200 Web App

Select a web app to begin

- Size and Topometry
- Topology
- Multi Model
- Parameter Study

1 Tutorials are available in the User’s Guide
Obtain Starting Files

1. Find the indicated example
2. Click Link
3. The starting file has been downloaded

- When starting the procedure, all the necessary BDF files must be collected together.
Open the Correct Page

1. Click on the indicated link

MSC Nastran can perform many optimization types. The MSC Nastran SOL 200 Web App includes dedicated web apps for the following:

- Size and Topometry Optimization
- Topology Optimization
- Global Optimization
- Multi Model Optimization

The web app also features the HDF5 Explorer, a web application to extract results from the H5 file type.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Upload BDF Files

1. Click 1. Select Files and select dsoug7_multi_subcase.bdf
2. Click Upload Files

- The process starts by uploading all the necessary BDF files. The BDF files can be files of your own or files found in the Tutorials section of the User’s Guide.
Create Design Variables

1. In the filter box, type ‘t’
2. Click 10 on the pagination bar
3. Click on + Options
4. Set the Lower Bound to .01
5. Set the Upper Bound to 1.0
6. Click Create

- There are 2 methods to create the 10 design variables: Click each blue plus icon, which requires 10 mouse clicks, or click the yellow Create icon, which requires 1 mouse click.
- Each step has hidden functionality for advanced users. The visibility is controlled by clicking + Options.
- If the property entry, e.g. PSHELL, was given a name in Patran, e.g. Car Door, the name can be shown by marking the checkbox titled Entry Name.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Create Design Variables

1. Click 10 on the pagination bar
2. 10 design variables (x1 - x10) have been created and correspond to the 10 different thicknesses

- In some instances, the optimizer will vary a positive design variable and make it negative, e.g. a thickness of .08 becomes -.01 in a weight minimization optimization. Certain properties, such as thickness or beam cross sections should never be negative. The lower bound in this example is set to .01 to avoid a negative variable during the optimization.
Create Design Constraints

1. Click Constraints
2. Click the plus (+) icon for Volume
3. Configure the following for constraint r1
 1. Lower Allowed Limit: 7.99
 2. Upper Allowed Limit: 8.01

- It may be desired to keep a certain response constant during the optimization. For example, the goal may be to preserve the volume of the original design. This is best addressed by creating a constraint where the lower and upper bound are slightly less and greater, than the original response. In this example, you may be tempted to use a lower bound of 8 and an upper bound of 8, but this is not advisable. The better option is to use 7.99 and 8.01 for the lower and upper bound, respectively.
Create Responses

1. Click the section title Step 3 - Optional - Create equation constraints, this will make the Equation Constraints section visible and accessible.

- The responses that are used for model matching must be defined. The response can be defined in the table titled “Step A – Optional – Create additional responses.” This table is accessible by first turning on the Equation Constraint section by marking the checkbox “Step 3”

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Create Responses

1. Scroll to section: Step A - Optional - Create additional responses
2. Click 1 time on the Displacement response to create responses: b1
3. Configure the responses as shown to the right
 - Example: Configure the following for b1
 - ATTA: 3 – RM –T3
 - ATTB: 50. (50 Hz)
 - ATTi: 1110 (grid/node 1110)

In this example, there are 14 responses to match. One response, b1, is created here. On the next page, CSV and Excel is used to create the other 13 responses. Refer to the Appendix on how to create the 13 responses manually.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
CSV Change of Responses

1. Click Options
2. Click Export

- Once Export is clicked, a CSV file is downloaded.
- When using the CSV Export capability, it is best to first create and configure one response that serves as an example for other responses that will be created.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
CSV Change of Responses

In the following steps, this will be done:

1. Open the downloaded file in Excel
2. Create 13 new rows and make the indicated changes
3. Save the file

* Generally, the last column titled DRESP1 ID should never be modified. For the DRESP1 ID column, if the cells are blank/empty, leave the cell empty. If the cell says DO NOT EDIT CELL, then leave the cell unchanged.
CSV Change of Responses

1. Select the .csv file that was modified on the previous slide.
2. Click Import.
3. A summary of changes are shown.

- The necessary 14 responses are now available in the web app.
- MSC Nastran has strict formatting requirements. For example, characters such as !, @, # are not valid for input fields on bulk data entries. Excel has no formatting rules for MSC Nastran, so care must be taken to ensure the formatting is MSC Nastran friendly. On CSV import, a summary is reported indicating all the changes or errors encountered.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
CSV Change of Responses

1. Click 20 to list at most 20 rows.

 - Since this example has only 14 responses, only 14 rows are displayed.

Step B - Optional - Adjust responses

CSV Change of Responses

<table>
<thead>
<tr>
<th>Label</th>
<th>Status</th>
<th>Response Type</th>
<th>Property Type</th>
<th>ATTA</th>
<th>ATTB</th>
<th>ATTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>50.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b2</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>100.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b3</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>164.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b4</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>50.</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>b5</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>84.</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>b6</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>171.</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>b7</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>97.</td>
<td>1105</td>
<td></td>
</tr>
<tr>
<td>b8</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>172.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b9</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>50.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b10</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>100.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b11</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>164.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b12</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>50.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b13</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>100.</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>b14</td>
<td></td>
<td>FRDISP</td>
<td>3 - RM - T3 (Rectangular z, Cylinder)</td>
<td>164.</td>
<td>1100</td>
<td></td>
</tr>
</tbody>
</table>
Configure Model Matching

1. Click Match
2. Click + Options
3. Click Export

A new CSV file is downloaded. Open the file in Excel.

- There are 2 methods to specify model matching data, e.g. target values, include in objective, allowed errors.
 - Method 1 – Supply the data directly in the web app
 - Method 2 – Use Excel and CSV to supply the data.
- This example will use Method 2.
Configure Model Matching

1. Add the indicated Target Values
2. Set the value to TRUE for the indicated cells
3. Click Save

- Excel is used to modify the CSV file and supply information for the target values, include in objective and allowed errors.
- If a label has TRUE for “Include in Objective,” then the error will be minimized in the objective.
- If a label has a value for “Max Allowed Error,” then the error will be constrained to be less than the max allowed error.
- If the Target Value is provided, but both the “Include in Objective” and “Max Allowed Error” cells are both blank, upon import to the web app, a default value of .01 will be used for “Max Allowed Error.”
- A label can be set for both “Include in Objective” and “Max Allowed Error.”

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>Single Scalar?</td>
<td>Description</td>
<td>Target Value</td>
<td>Include in Objective</td>
<td>Max Allowed Error</td>
</tr>
<tr>
<td>b1</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 50. Hz</td>
<td>2.8384</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b2</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 100. Hz</td>
<td>0.2613</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b3</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 164. Hz</td>
<td>0.2182</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b4</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 605 at frequency 50. Hz</td>
<td>0.488338</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b5</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 005 at frequency 84. Hz</td>
<td>0.018219</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b6</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 605 at frequency 171. Hz</td>
<td>0.1845</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b7</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1105 at frequency 97. Hz</td>
<td>0.022128</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b8</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1105 at frequency 173. Hz</td>
<td>0.279055</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b9</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 50. Hz</td>
<td>1.58019</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b10</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 100. Hz</td>
<td>0.140642</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b11</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 164. Hz</td>
<td>0.124761</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b12</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 50. Hz</td>
<td>0.522618</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b13</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 100. Hz</td>
<td>0.048008</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
<tr>
<td>b14</td>
<td>TRUE</td>
<td>RM - T3 component of displacement at grid 1110 at frequency 164. Hz</td>
<td>0.042346</td>
<td>TRUE</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Configure Model Matching

1. Select the CSV file that has been updated and saved
2. Click Import
3. A summary of changes is shown
4. The table has been updated to match the data in the CSV file

- If a target value is specified, then one of the following must be set: Include in Objective or Max Allowed Error. When a CSV is uploaded, if neither of these options are set, the Max Allowed Error is automatically set to .01. This value can be modified.
- Labels configured for Include in Objective are added to the Equation Objective. Labels configured with Max Allowed Error have corresponding Equation Constraints. Refer to the Equation Objective and Equation Constraint sections. A label can be set for both Include in Objective and Max Allowed Error.
Assign Constraints to Load Cases (SUBCASES)

1. Click Subcases
2. Select all the Subcases to display the corresponding columns in the table

- This example involves multiple subcases. Model matching will be performed across different subcases.
Assign Constraints to Load Cases (SUBCASES)

1. Click 20 on the pagination bar
2. Assign r1 as a Global Constraint

This tutorial performs model matching for multiple subcases. The constraints must be assigned to the subcases accordingly.

3. Model matching for labels b4, b5, b6, b7 and b8 belong to SUBCASE 1. Mark the indicated checkboxes.
4. Model matching for labels b9, b10, b11 belong to SUBCASE 2. Mark the indicated checkboxes.
5. Model matching for labels b12, b13, b14 belong to SUBCASE 3. Mark the indicated checkboxes.

Note that the labels R1, R2, ..., may not necessarily be identical to the image on this page. Refer to the labels b4, b5, b6, ..., in the Description column to assign the constraints.
Assign Constraints to Load Cases (SUBCASES)

1. Scroll to section: Step A - Optional - Configure DRSPAN for equation objective and constraints
2. Configure DRSPAN such that labels b1, b2, b3 are sourced from SUBCASE 1

- Each subcase will yield different displacement frequency responses. The equation objective R0 is dependent on labels b1, b2 and b3, any of which can come from subcase 1, 2 or 3. The DRPSAN option is used to specify the subcase in which each label is sourced from.
- In this example, the equation objective is dependent on b1 from subcase 1, b2 from subcase 1 and b3 from subcase 1.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Export New BDF Files

1. Click on Exporter
2. Click on Download BDF Files

- When the download button is clicked a new file named “nastran_working_directory” is downloaded. If the file already exists in your local folder, the folder name is appended with a number, e.g. “nastran_working_directory (1).zip”
Perform the Optimization with Nastran SOL 200

A new .zip file has been downloaded

1. Right click on the file
2. Click Extract All
3. Click Extract on the following window

- Always extract the contents of the ZIP file to a new, empty folder.
Perform the Optimization with Nastran SOL 200

1. Inside of the new folder, double click on Start MSC Nastran
2. Click Open, Run or Allow Access on any subsequent windows
3. MSC Nastran will now start

- After a successful optimization, the results will be automatically displayed as long as the following files are present: BDF, F06 and LOG.
- One can run the Nastran job on a remote machine as follows:
 1) Copy the BDF files and the INCLUDE files to a remote machine.
 2) Run the MSC Nastran job on the remote machine.
 3) After completion, copy the BDF, F06, LOG, HS files to the local machine.
 4) Click “Start MSC Nastran” to display the results.

Using Linux?

Follow these instructions:
1) Open Terminal
2) Navigate to the nastran_working_directory
 cd /nastran_working_directory
3) Use this command to start the process
 ./Start_MSC_Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x /nastran_working_directory

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Status

While MSC Nastran is running, a status page will show the current state of MSC Nastran.

- The status of the MSC Nastran job is reported on the Status page. Note that Windows 7 users will experience a delay in the status updates. All other users of Windows 10 and Red Hat Linux will see immediate status updates.

Nastran SOL 200 Web App - Status

<table>
<thead>
<tr>
<th>Name</th>
<th>Status of Job</th>
<th>Design Cycle</th>
<th>RUN TERMINATED DUE TO</th>
</tr>
</thead>
<tbody>
<tr>
<td>model.bdf</td>
<td>Running</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>
Review Optimization Results

After MSC Nastran is finished, the results will be automatically uploaded.

1. The final value of objective, normalized constraints (not shown) and design variables can be reviewed.

- Most successful optimizations end with this message in the F06 file:
 - RUN TERMINATED DUE TO HARD CONVERGENCE TO AN OPTIMUM
- The message for this optimization reads:
 - RUN TERMINATED DUE TO MAXIMUM NUMBER OF DESIGN CYCLES
- This message is valid for the following reason. The start of the optimization reports a model matching error a little over .4. By the end of the optimization, the error is very small, i.e. the FE results are close to matching experiment. Further inspection of the results in the next slides confirm the optimization was successful.
- If this optimization were repeated, setting the DESMAX, or maximum number of cycles, to a value of 10 will allow the optimizer to terminate sooner.

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Review Optimization Results

1. If “Start MSC Nastran” was used, bar charts will automatically be generated.

2. These charts can be used to compare the initial and final values of the responses and the target values.

- The Bar Charts report 3 values for each response/label: The original/initial value, the final value after optimization and the target value.
- If the bars for both final and target values are equally leveled, this indicates an exact correlation.
Review Dynamic Results

1. If “Start MSC Nastran” is used and MSC Nastran 2016 or newer is used, the HDF5 Explorer will be opened and a plot will automatically be created.

2. The Plots Browser contains a list of the plots that have been created.

3. Click the indicated image

- Use the navigation bar at the top of the web app to navigate between the following sections:
 - Acquire Dataset
 - Plots Browser
 - Combine Plots
 - Last Plot Added

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Review Dynamic Results

1. The plot contains the INITIAL and FINAL values of the dynamic response.

2. The target values are shown by triangle markers. It is shown that the final displacement curve correlates to the target values.

- The HDF5 Explorer is useful for creating plots of frequency response analysis results and can be used in non-optimization scenarios.
Results
Subcase 1

Transverse displacement at grid 605

Transverse displacement at grid 1105

Transverse displacement at grid 1110
Results
Subcase 2

For this subcase, model matching is only performed for Node 1110, hence, only one plot has been created for Subcase 2.
Results

Subcase 3

For this subcase, model matching is only performed for Node 1110, hence, only one plot has been created for Subcase 3.
Update the Original Model

1. Click Results
2. Click PCH to BDF
Update the Original Model

The original .bdf/.dat file has old information about the properties. The properties will be updated.

1. Select the model.pch file
2. Select the original file: dsoug7_multi_subcase.bdf
3. A summary of updates that will be performed are shown
4. Click Download and a new updated BDF file is downloaded

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Update the Original Model

1. Note the entries have been updated with the optimized properties

Nastran SOL 200 questions? Email me: christian@the-engineering-lab.com
Appendix
Appendix Contents

- Manually Creating Responses
- How is error defined in this tutorial?
Manually Creating Responses

1. Scroll to section: Step A - Optional - Create additional responses
2. Click 14 times on the Displacement response to create responses: b1, b2, ..., b14
3. Configure the responses as shown to the right
 - Example: Configure the following for b1
 - ATTA: 3 – RM –T3
 - ATTB: 50. (50 Hz)
 - ATTI: 1110 (grid/node 1110)
 - Repeat the same for b2 through b14 but note that each row will be different

This tutorial used the CSV and Excel method to create all 14 responses. This page shows the process to manually create the 14 responses.
How is error defined in this tutorial?

There are 2 methods to define the error.

- Method A requires the use of both the lower and upper bound.
- Method B requires only the use of the upper bound.

Method A and Method B are equivalent, but Method B requires only the specification of an upper bound. Method B is used in this tutorial.

Let

\[
\text{Error} = \frac{b_1 - \text{Target}}{\text{Target}}
\]

Method A

Lower Bound < \(\frac{b_1 - \text{Target}}{\text{Target}} \) < Upper Bound

- \(b_1 \): Response from FEA
- \(\text{Target} \): Value from experiment
- Lower Bound: -.1 or -10%
- Upper Bound: +.1 or +10%
 - The error is allowed to be between -.1 and +.1 (Equivalently between -10% and +10%)

Method B

\[
\left(\frac{b_1 - \text{Target}}{\text{Target}} \right)^2 < \text{Upper Bound}
\]

- \(b_1 \): Response from FEA
- \(\text{Target} \): Value from experiment
- Upper Bound: \(.1^2 = .01\)
 - In this method, the expression is now the error squared. The max allowed error is +/- .1 but can be expressed with one bound, i.e. \(\text{error}^2 < .1^2 = .01 \).
End of Tutorial