Workshop - MSC Nastran Topometry Optimization with Symmetry Constraints

AN MSC NASTRAN SOL 200 TUTORIAL

Before Starting

This example requires MSC Nastran 2024.1 or newer.

Goal: Use Nastran SOL 200 Optimization

Before Optimization

- Mass: .8166 kg
- Uniform thickness

After Optimization

- Mass: .3266 kg
- Vary the thickness of each element

Details of the structural model

Optimization Problem Statement

Comparison of Topometry Optimization With and Without Symmetry

Post-processor

0.0038

0.0036

0.0034

0.00325

0.00306

0.00288

0.00269

0.00250

0.00231

0.00213

0.00194

0.00175

0.00156

0.00138

0.00119

NO SYMMETRY

SYMMETRY

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

Tutorial

Tutorial Overview

- 1. Start with a .bdf or .dat file
- 2. Use the SOL 200 Web App to:
 - Convert the .bdf file to SOL 200
 - Design Regions/Variables
 - Design Objective
 - Design Constraints
 - Perform optimization with Nastran SOL 200
- 3. Review optimization results
 - .f06
 - Topometry Optimization and Structural Results

Special Topics Covered

Topometry Optimization with Symmetry Constraints – Topometry optimization may lead to unsymmetric results. This tutorials discusses the use of mirror symmetry constraints to obtain symmetric results.

SOL 200 Web App Capabilities

Compatibility

- Google Chrome, Mozilla Firefox or Microsoft Edge
- Windows and Red Hat Linux

• Installable on a company laptop, workstation or server. All data remains within your company.

The Post-processor Web App and HDF5 Explorer are free to MSC Nastran users.

Benefits

entries.

- REAL TIME error detection. 200+
- error validations.
- REALT TIME creation of bulk data •
- Web browser accessible
- Free Post-processor web apps
 - +80 tutorials

Web Apps

Web Apps for MSC Nastran SOL 200 Pre/post for MSC Nastran SOL 200. Support for size, topology, topometry, topography, multi-model optimization.

Shape Optimization Web App Use a web application to configure and perform shape optimization.

Machine Learning Web App Bayesian Optimization for nonlinear response optimization (SOL 400)

Remote Execution Web App Run MSC Nastran jobs on remote Linux or Windows systems available on the local network

PBMSECT Web App Generate PBMSECT and PBRSECT entries graphically

Dynamic Loads Web App Generate RLOAD1, RLOAD2 and DLOAD entries graphically

Ply Shape Optimization Web App Optimize composite ply drop-off locations, and generate new PCOMPG entries

Stacking Sequence Web App Optimize the stacking sequence of composite laminate plies

HDF5 Explorer Web App Create graphs (XY plots) using data from the H5 file

Before Starting

 Ensure the Downloads directory is empty in order to prevent confusion with other files

- Throughout this workshop, you will be working with multiple file types and directories such as:
 - .bdf/.dat
 - nastran_working_directory
 - .f06, .log, .pch, .h5, etc.
- To minimize confusion with files and folders, it is encouraged to start with a clean directory.

The Engineering Lab

Go to the User's Guide

1. Click on the indicated link

• The necessary BDF files for this tutorial are available in the Tutorials section of the User's Guide.

Select a web app to begin Before After Optimization for SOL 200 Multi Model Optimization Machine Learning | Parameter HDF5 Explorer Viewer Study Tutorials and User's Guide (1)Full list of web apps

SOL 200 Web App

Obtain Starting Files

- 1. Find the indicated example
- 2. Click Link
- 3. The starting file has been downloaded

• When starting the procedure, all the necessary BDF files must be collected together.

1 MSC Nastran Topometry Optimization with Symmetry Constraints This tutorial details the configuration of symmetry constraints in a topometry optimization.

Starting BDF Files: Link 2 Solution BDF Files: Link

Open the Correct Page

Click on the indicated link

- MSC Nastran can perform many optimization types. The SOL 200 Web App includes dedicated web apps for the following:
 - Optimization for SOL 200 (Size, Topology, Topometry, Topography, Local Optimization, Sensitivity Analysis and Global **Optimization**)
 - Multi Model Optimization
 - Machine Learning
- The web app also features the HDF5 Explorer, a web application to extract results from the H5 file type.

SOL 200 Web App

Select a web app to begin

Machine Learning | Parameter Study

Tutorials and User's Guide

Full list of web apps

HDF5 Explorer

Viewer

Upload BDF Files

- Click 1. Select Files and select topometry_cantilever_plate.bdf
- 2. Click Upload Files

The process starts by uploading all the necessary BDF files. The BDF files can be files of your own or files found in the Tutorials section of the User's Guide.

Step 1 - Upload .BDF Files

1. Select files	topm_cs2.dat		
		Inspecting: 100%	
2 2. Upload files		Uploading: 100 %	
List of Selecte	d Files		

Create Design Region

- 1. Click Topometry
- Click on the plus (+) icon to set the thickness (T) of PSHELL 1 as a Design Region
- 3. The new Design Region is added to the table
- Suppose the goal is to vary the thickness. In traditional Size optimization, the thickness can be a set a single design variable. With Topometry optimization, when the design region is set, each element in the region is given its own independent thickness design variable.
- If PSHELL 1 has 500 elements associated and is configured as a design region, then there will be 500 design variables created.
- Each step has hidden functionality for advanced users. The visibility is controlled by clicking +Options.
- If the property entry, e.g. PSHELL, was given a name in Patran, e.g. Car Door, the name can be shown by marking the checkbox titled Entry Name.

SOL 200	Web App - 0	Optimizatio	n	Upload	Variables	Objective	Constraints	Subcases	Exporter	Results
Size	Topology	Topometry	$\overline{1}$	ography						

Step 1 - Select design properties

+ Options

Create DVXREL1	Property \$	Property Description \Leftrightarrow	Entry 🌲	Entry ID 🌲	Current Value ≑
	Search	Search	Search	Search	Search
+	E	Young's modulus	MAT1	1	2.+11
+	NU	Poisson's ratio	MAT1	1	.3
+	RHO	Mass density	MAT1	1	7800.
2 🛨	Т	Thickness	PSHELL	1	.003

Step 2 - Adjust design variables

★ Delete Visible Rows

+ Options

	Label \$	Status \$	Property \$	Property Description \ddagger	Entry ≑	Entry ID 💠	Initial Value	Lower Bound	Upper Bound	Allowed Discrete Values
	Search	Search	Search	Search	Search	Search	Search	Search	Search	Search
×	x1	0	т	Thickness 3	PSHELL	1	.003	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,

Step 2 - Adjust TOMVAR Entries

Create Design

Region

- 2. Mark the checkbox for Symmetry Constraint Column
- 3. Set Symmetry Option to Plane Symmetry
- 4. Set Coordinate System ID to 1
- 5. Set Mirror Symmetry Planes to YZ
- The defined symmetry constraints impose a requirement that the Topometry optimization solution is symmetric across the YZ plane for coordinate system 1

Symmetry Option	Mirror Symmetry Planes
Plane Symmetry 3	🗆 XY 🔽 YZ 🗌 ZX
Coordinate System ID	(5)
1 (4)	\smile
Additional PIDs Symmetric to PID 1	
Examples: 101, 102, 103	

Create Design Objective

- 1. Click on Objective
- 2. Type 'comp' in the search box
- 3. Select the plus(+) icon for Compliance
- 4. The objective with label r0 is created. The objective is to minimize (MIN)
- Compliance is equal to twice the total strain energy. By minimizing the compliance/strain energy, the stiffness of the model is being maximized. See the appendix for additional details regarding compliance.

0		
Step	1 - Select an objective	
Select an	n analysis type	
SOL 101	1 - Statics	
Select a r	response	
	Response Description \Rightarrow	Response Type 💠
	Response Description \$	Response Type \Rightarrow
	Response Description \$ Search Compliance (Product of displacement and the applied load)	Response Type \$

Step 2 - Adjust objective

+ Options

	Label	Status	Response Type	Maximize or Minimize	Property Type	ΑΤΤΑ	ATTB	ATTI
×	rO	0	сомр (4	MIN ~				

Create Design Constraints

- L. Click Constraints
- . Type 'frmass' in the search box
- 3. Select the plus(+) icon for Fractional Mass
- 4. Configure the following for r1
 - Upper Allowed Limit: .4
 - (Retain 40% of the material / 60% mass reduction)
- The fractional mass constraint r1 is set for a target of .4. The optimizer will vary the design variables, normalized material densities, to produce a design that is less than or equal to 40% of the original mass.

L 200 Web	App - Optimization	Upload	Variables	Objective	Constraints	Subcases	Exporter	Results	
Constraints	Equation Constraints				(1)				
Step ⁻	1 - Select const	raints							
Select an	analysis type								
SOL 101	- Statics								*
Select a r	esponse								
		Res	oonse Descrij	otion \$				Response Type 💠	
	Search					frm	ass 2		
3	Fractional Mass					FRM	ASS		

5 10 20 30 40 50

Step 2 - Adjust constraints

+ Options

	Label	Status	Response Type [⊕]	Property Type $\hat{\varphi}$	ATTA 🗢	ATTB 💠	ATTI ≑	Lower Allowed Limit	Upper Allowed Limit
	St	Sear	Search	Search	Search	Search	Search	Search	Search
×	r1	0	FRMASS	~			Blank or Property ID (PID)	Lower 4	.4

Configure Optimization Settings

- 1. Click Settings
- 2. Set DESMAX to 40
- 3. Set P2 to 12 Print constraints and responses
- The P2 setting controls the output of the following information to the F06 file: objective, constraints, responses, properties and design variables.
- This is a topometry optimization and will generate a large amount of property and design variable data in the F06 file. To make the F06 file size manageable, the design variable information is omitted by using the P2=12 option. When the results are viewed, note that the objective and constraint information is plotted, but the design variable history is not plotted due to the P2=12 option.
- If this is a combined size and topometry optimization, P2 should be set to 15. If this is a pure size optimization, P2 should be set to 15.

SOL 200 Web App - Optimization Upload Variables Objective Constraints Subcases Exporter Results Settings Match Other

1

Optimization Settings

Parameter 💠	Description 🗢	Configure ≑
Search	Search	Search
APRCOD	Approximation method to be used	2 - Mixed Method
CONV1	Relative criterion to detect convergence	Enter a positive real number
CONV2	Absolute criterion to detect convergence	Enter a positive real number
DELX	Fractional change allowed in each design variable during any optimization cycle	Enter a positive real number
DESMAX	Maximum number of design cycles to be performed	40
DISBEG	Design cycle number for discrete variable processing initiation	Enter a positive integer
GMAX	Maximum constraint violation allowed at the converged optimum	Enter a positive real number
P1	Print items, e.g. objective, design variables, at every n-th design cycle to the .f06 file	1
P2	Items to be printed to the .f06 file	12 - Print constraints and respons 🗸
TCHECK	Topology Checkerboarding	-1 - Automatic selection (Default) 🗸
TDMIN	Minimum diameter of members in topology optimization	Enter a positive real number
TREGION	Trust Region	🗌 1 - Trust Region On 🗸

Configure Settings

- 1. Scroll to section Result Files
- 2. Select one of the following H5 output options
 - Create the H5 file with MDLPRM

• Create the H5 file with HDF5OUT

- The H5 file is used by the Postprocessor web app to display MSC Nastran results.
- The H5 file is used by the HDF5 Explorer to create graphs (XY Plots) of MSC Nastran results.

SOL 200 Web App - Optimization Upload Variables Objective Constraints Subcases Exporter Results Settings Match Other User's Guide	Home
Result Files 2	< >
H5 Output Option	3DF Ou
Create the H5 file with HDF5OUT (supported in MSC Nastran 2022.2 or newer) Select an Option	\$ \$ \$ \$ DOPTPRM DESMA
Result Files	\$ Parameter t HDF5OUT INPUT
H5 Output Option Create the H5 file with HDF5OUT (supported in MSC Nastran 2022.2 or newer) 3 3	

Export New BDF Files

1. Click on Exporter

2. Click on Download BDF Files

When the download button is clicked a new file named "nastran_working_directory" is downloaded. If the file already exists in your local folder, the folder name is appended with a number, e.g. "nastran_working_directory (1).zip"

SOL 200 Web App - Optimization Upload Variables Objective Constraints Subcases Exporter Results

< >

BDF Output - Model

assign userfile = 'optimization_results.csv', status = unknown, form = formatted, unit = 52 \$ \$ Created by MSC Apex Version 2024.1 on Mar 21, 2024 at 13:24:23 \$ Values exported in this file are expressed using the consistent SI_K unit \$ system \$ Length m \$ Mass kg \$ Time s \$ Force N \$ Temperature K \$ NOTE: Nastran requires the following angle values always be defined in \$ degrees, while all other rotational quantities will be defined in terms of \$ radians \$ PCOMPG (THETAi - ply orientation angle) \$ TABLED1 (yi - phase angle data when referenced in TP field of RLOAD2) \$ Linear Static Scenario Static Scenario 1 \$ Scenario description SOL 200 CEND ECHO = none set 10 = 20 PARAM, AUTOMSET, AUTO \$ Automatic Stiffness Singularity Constraints AUTOSPC (NOPRINT) = YES

1

Download BDF Files

\$*				Desi		1		*
\$*								*
\$*****	* * * * * * * *	******	* * * * * * * *	* * * * * * * *	******	*******	*************	* * * * * * * * *
\$								
\$			D	esign Re	gions/V	ariables		
\$								
\$								
Ş								
TOMVAR	3000001	PSHELL	1	Т	.003	.001	.004	
	SYM	1		ΥZ				
ş								
ş								
e e				Docim	Object	ino		
9 S				Design	I ODJECL	IVE		
s								
s								
DRESP1	8000000	r0	COMP					
\$								
\$				Design	Constra	ints		
\$								
\$								
\$								
DRESP1	8000002	r2	FRMASS					
\$								
Ş								
DCONSTR	30002	B000002		0.4				
			2000					
ş			Des	ign Equa	ition Co	nstraints	1	
o 0								
9								
Y								
s								
s								
s								
s								
								•

\$***********

Developed by The Engineering Lab

BDF Output - Design Model

**

Perform the Optimization with Nastran SOL 200

- 1. A new .zip file has been downloaded
- 2. Right click on the file
- 3. Click Extract All
- 4. Click Extract on the following window
- Always extract the contents of the ZIP file to a new, empty folder.

	 albatross 	Downloads	•	Search Download	s	Q
Organize 🔻	🍃 Open	▼ Share with ▼	New folder			0
🔆 Favorites		Name	18.20	Date modified	Т	уре
Desktop	ds	inastran_working	directory.zip	0/25/2019 0:46 A	M C	omnress
Recent P	laces		Ŭ Ž	Open in new window		
i OneDrive	2		(2)	Extract All		
늵 Libraries				Edit with Notepad++ Open with		
Documer	nts			Share with		+
Music Pictures				Restore previous versio	ns	
Videos				Send to		+
🍓 Homegrou	ıp			Cut		
_	- 0			Сору		
👰 Computer				Create shortcut Delete		
📬 Network				Rename		
a nas	tran_workin	<pre> directory.zip Date n </pre>	nodified: 2/25/2	Properties		1
Con	npressed (zip	oped) Folder	Size: 114 bytes	0	🚯 Ext	ract Com
				1	Select	t a Des
					Files wi	ll be extra
					C:\Use	ers\user\
					Shov	w extract

Perform the Optimization with Nastran SOL 200

- 1. Inside of the new folder, double click on Start MSC Nastran
- 2. Click Open, Run or Allow Access on any subsequent windows
- 3. MSC Nastran will now start
- After a successful optimization, the results will be automatically displayed as long as the following files are present: BDF, F06 and LOG.
- One can run the Nastran job on a remote machine as follows:

 Copy the BDF files and the INCLUDE files to a remote machine.
 Run the MSC Nastran job on the remote machine.
 After completion, copy the BDF, F06, LOG, H5 files to the local machine.
 Click "Start MSC Nastran" to display the results.

Using Linux?

Follow these instructions:
1) Open Terminal
2) Navigate to the nastran_working_directory cd ./nastran_working_directory
3) Use this command to start the process ./Start_MSC_Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x ./nastran_working_directory

🗸 🖓 🖉 Downl 🕨 nastran_working_directory 🕨 🗸	✓ Search nastran_work	ing_dir 🔎	
Organize Include in library New folder New folder	r 8== •	Dpen	File
Favorites	Date modified	Туре	
💻 Desktop	2/24/2018 1:57 PM	File folder Do y	/ou
Downloads 🛛 🖉 design_model.bdf	2/24/2018 1:57 PM	BDF File	
🕮 Recent Places 📄 model.bdf	2/24/2018 1:57 PM	BDF File	1
ConeDrive 🛛 🔁 Start MSC Nastran	2/24/2018 1:57 PM	Shortcut	1
□ Libraries □ Documents □ Music □ Pictures □ Videos		V A	lwaj
⊷ Homegroup		Q	

Status

1. While MSC Nastran is running, a status page will show the current state of MSC Nastran

The status of the MSC Nastran job is reported on the Status page. Note that Windows 7 users will experience a delay in the status updates. All other users of Windows 10 and Red Hat Linux will see immediate status updates.

SOL 200 Web App - Status

n Python 👘 📥 MSC Nastran

Status

Name	Status of Job	Design Cycle	RUN TERMINATED DUE TO
model.bdf	Running	None	

Review Optimization Results

After MSC Nastran is finished, the results will be automatically uploaded.

- Ensure the messages shown have green checkmarks. This is indication of success. Any red icons indicate challenges.
- 2. The final value of objective and normalized constraints can be reviewed.
- Note that in a Topometry optimization, hundreds or thousands of design variables can be created. In this situation, the Design Variables are not plotted and displayed. Instead, the Objective and Normalized Constraints are displayed. It is recommended that a traditional post-processor be used to review the design variable results.

Final Message in .f06

RUN TERMINATED DUE TO HARD CONVERGENCE TO AN OPTIMUM AT CYCLE NUMBER =

Objective

1

30.

Results

Before Optimization

• Mass: .8166 kg

After Optimization

- Mass: .3266 kg
- Vary the thickness of each element

Ensure the BDF files prior to optimization have one of these entries:

- H5 Output
 - MDLPRM HDF5
 - HDF5OUT INPUT YES

MDLPRM HDF5 is supported in MSC Nastran 2016.1 and newer. HDF5OUT is supported in MSC Nastran 2022.2 and newer. 😑 model.

9

12

18

19

21 22

24 25 26

27

28 29 30

32

34

The following applies to MSC Nastran 2023.4 and older. For MSC Nastran 2024.1, this is not needed.

Change DESPCH1 to 1

- DESPCH
 - Before:

PARAM DESPCH1-1

- After:
 - PARAM DESPCH11

DESPCH1 -1 outputs entries to the PCH file in the small field format. Since the PSHELL IDs are longer than 8 characters, the IDs appear as asterisk characters, e.g. *******. DESPCH1 1 outputs the entries in the large field format, so the IDs are fully visible.

model.pch when DESPCH=-1

och E	3									📄 model.pch
	Ş									1
	Ş	*****	******	*******	******	******	*******	*******	*******	2
	Ş	*							*	3
	Ş	*	CONTINU	JOUS DESI	GN CYC	CLE NUM	BER =		*	4
	Ş	*							*	5
	Ş	*****	******	********	******	******	*******	******	*******	6
	Ş									7
	Ş									8
	Ş	*****	******	********	******	******	*******	******	*******	9
	Ş	*							*	10
	Ş	*	CONTINU	JOUS DESI	GN CYC	CLE NUM	BER =		*	11
	Ş	*							*	12
	Ş	*****	******	*******	******	******	*******	******	*******	13
	Ş									14
	Ş									15
	\$ UPI	ATED ANALY	SIS MODE	EL DATA EN	TRIES					16
	ş 🚺		ר							17
	PSHELL	*******	1	.001	1	1.0	1	.833333	0.0	18
				0						19
	PSHELL	******	1	.003932	1	1.0	1	.833333	0.0	20
				0						21
	PSHELL	*******	1	.003583	1	1.0	1	.833333	0.0	22
				0						23
	PSHELL	*******	1	.00326	1	1.0	1	.833333	0.0	24
				0						25
	PSHELL	*******	1	.003114	1	1.0	1	.833333	0.0	26
				0						27
	PSHELL	*******	1	.002941	1	1.0	1	.833333	0.0	28
				0						29
	PSHELL	*******	1	.00274	1	1.0	1	.833333	0.0	30
				0						31
	PSHELL	*******	1	.002506	1	1.0	1	.833333	0.0	32
				0						33
	PSHELL	*******	1	.002254	1	1.0	1	.833333	0.0	34
				0						35
	PSHELL	*******	1	.001968	1	1.0	1	.833333	0.0	36
				0						37
	PSHELL	*******	1	.001628	1	1.0	1	.833333	0.0	38
				0						39

model.pch when DESPCH=1

l.pch 🔀						
Ş						
Ş	**********	*******	******	******	*******	*******
Ş	*					*
ş	* CONTINU	JOUS DESIGN CY	CLE NUM	BER =		×
ş	*					×
Ş	**********	* * * * * * * * * * * * * * * * * *	*****	*****	******	* * * * * * * * *
Ş C						
7	********		*******	*******	*******	*******
2 C	*					*
ç ç	* CONTINU	TOUS DESTAN CY	CIE NUM	BFD -		*
Υ ς	*	JOOD DEDION CI	CHI NOM			*
S	**********	******	******	******	******	*******
S						
S						
S UPDA	ATED ANALYSIS MODE	EL DATA ENTRIES				
ş		`				
PSHELL*	100000001	1	1.0000	7309E-03		1*
*	1.00000000E+00	1	8.3333	3333E-01	0.0000	0000E+00*
*				0		*
*						
PSHELL*	100000002	1	3.9315	2203E-03		1*
*	1.00000000E+00	1	8.3333	3333E-01	0.0000	0000E+00*
*				0		*
*						
PSHELL*	100000003	1	3.5825	7980E-03		1*
*	1.00000000E+00	1	8.3333	3333E-01	0.0000	0000E+00*
*				0		*
*						
PSHELL*	100000004	1	3.2602	7502E-03		1*
*	1.00000000E+00	1	8.3333	3333E-01	0.0000	0000E+00*
*				0		*
*						
PSHELL*	100000005	1	3.1136	9399E-03		1*
*	1.00000000E+00	1	8.3333	3333E-01	0.0000	0000E+00*
*				0		*
*	100000000		0.0400			
PSHELL*	1000000006	1	2.9408	/USIE-03	0.0000	1*
×	1.00000000E+00	1	8.3333	3333E-01	0.0000	JUUUE+U0*

The original BDF files are updated to use the new thickness distributions after a topometry optimization.

- After a topometry optimization, new PSHELL entries are output to the PCH file.
- Also, the 2D element entries must be updated to use the new PSHELL entry IDs.

😑 topm_cs2.dat 🔀 CQUAD4,48368,100000001,49013,49014,50013,50014 COUAD4 CQUAD4,48369,100000002,49014,49015,50012,50013 CQUAD4 CQUAD4,48370,100000003,49015,49016,50011,50012 CQUAD4 CQUAD4,48371,100000004,49016,49017,50010,50011 CQUAD4 CQUAD4,48372,100000005,49017,49018,50009,50010 CQUAD4,48373,100000006,49018,49019,50008,50009 CQUAD4 CQUAD4,48374,1000000007,49019,49020,50007,50008 CQUAD4 CQUAD4,48375,100000008,49020,49021,50006,50007 CQUAD4 CQUAD4,48376,100000009,49021,49022,50005,50006 CQUAD4 CQUAD4,48377,100000010,49022,49023,50004,50005 CQUAD4 CQUAD4,48378,100000011,49023,49024,50003,50004 CQUAD4,48379,100000012,49024,49025,50002,50003 CQUAD4 😑 topm_cs2.dat 🛛 😑 model.pch 🔛 DISPLACEMENT (PLOT) = ALL ŝ STRESS (PLOT, VONMISES, CORNER) = ALL OLOAD(PLOT) = ALL SPCFORCES(PLOT) = ALL ¢ GPFORCE (PLOT) = ALL S CONTINUOUS DESIGN CYCLE NUMBER MPCFORCES (SORT1, PLOT) = ALL Ś ***** S S UPDATED ANALYSIS MODEL DATA ŝ PSHELL* 1.0000000E+00 • PSHELL* 1.0000000E+00 *

			37	Ş									
********	******	*****	38	\$ Event	name: 1	Event 1							
			39	\$ Event	descri	ption:							
			40	SUBCASE	1								
	(1	.)	41	SUBTIT	LE=Even	t 1							
ENTRIES	<u> </u>		42	SPC =	5								
			43	LOAD =	41								
1	1 000447228 02	1 +	44	BEGIN B	ULK								
1	1.00044/22E-03	±	45	hdf5out									
1	8.33333333E-01	0.0000000E+00*	46	\$ HDF5	Results	file							
	0	*	47	\$MDLPRM	,HDF5,1								
			48	PARAM, P	RGPST,N	0							
1	1 000427228 02	1 +	49	PARAM, P	RTMAXIM	, NO							
1	1.00043/22E-03	1 ~	50	Ş	.2		.4	.5	.6	7			.0
1	8.33333333E-01	0.0000000E+00*	51	ş	.2		.4	.5	.6	7	8		.0
	0	*	52	\$.2		. 4	.5	.6		8		.0
			53	CORD2R	1		Ο.	0.	ο.	ο.	Ο.	1.	
	1 000405505 00		54		1.	ο.	0.						
1	1.00043550E-03	1*	55	ş	.2		.4	.5	.6	7	8	9	.0
1	8.33333333E-01	0.0000000E+00*	56	\$ Parts	& Asser	mblies co	ntained	in Asser	nbly Ape	xdbY2			
	0	*	57	Ş									
			58	Ş									
			59	Ş	2	3	4	5	6	7	8	9	0
1	1.00044315E-03	1*	60	Ş									
1	8.33333333E-01	0.0000000E+00*	61	Ş									
	0	*	62	BCPARA	0	METHOD	SEGTOSE	GNLGLUE	0				
	_		63	Ş									
_			64	\$ Part	Part1								
1	1.00044449E-03	1*	65	S									

Original BDF File

Questions? Email: christian@ the-engineering-lab.com

1.0000000E+00

1.0000000E+00

new 2D elements.tmp

🔚 new_2D_elements.tmp 🔀

*

۰.

*

*

PSHELL*

PSHELL*

PSHELL*

Original BDF File

1. This Python script is used to automate the update the process.

```
import hdf5plugin # This library is necessary when HDF50UT is used (Approximately MSC Nastran 2021 and newer)
import re
def get dataset cquad4(path of h5 file):
   file = h5py.File(path_f_h5_file, 'r')
dataset1 = file['/NASTRAN/INPUT/ELEMENT/CQUAD4']
   dataset original = dataset1[...]
   list of objects = []
   for element in dataset_original:
       # Store the following fields EID, PID, G1, G2, G3, G4
       list_of_objects.append(
               'eid': element[0],
               'pid': element[1],
               'gl': element[2][0],
               'g2': element[2][1],
               'g3': element[2][2],
               'g4': element[2][3]
       )
   return list of objects
def read cquad4 entries from h5 and write to bdf (path a, path of new bdf file):
    objects a = get dataset cquad4 (path a)
   list_of_strings = []
   for element i in objects a:
       # Write the fields to an array/list
       # Ensure all array elements are strings so ','.join() works properly
       array of fields = [
           str(element_i['eid']),
           str(element i['pid']),
           str(element i['q1']),
           str(element i['g2']),
           str(element i['g3']),
           str(element_i['g4'])
       1
       # Create the entry with comma delimiters, which is the free field format
       list_of_strings.append(','.join(array_of_fields))
   # Write the strings to a text file
   file = open(path_of_new_bdf_file, 'w')
   for item in list of strings:
       file.write(item + '\n')
   file.close()
def filter entries from pch(path_of_pch_file, name_of_entry, path_of_new_bdf_file):
   # This function reads a PCH file and keeps specific entries
   # Before (PCH File):
   # PCOMP 10000001-.0105 0.0 650000. TSAI 0.0 0.0
                                                                        SYM
                  70 1.5 80.
70 1.5 80.
                                        YES
                                                70 .774108-65.
                                                                        YES
   -
                                        YES
                                                 70 .774108-65.
                                                                        YES
   #
   # $ Spawned PSHELL, MAT2 entries from PCOMP 10000001
   # $ PSHELL*
                                      110000001 9.09643308E+00
   # $ *
                  1.0000000E+00
                                              0 1.0000000E+00 0.0000000E+00*
   # After (new entries.bdf):
   # PCOMP 10000001-.0105 0.0 650000. TSAI 0.0 0.0
                                                                        SYM
                                                 70 .774108-65.
                  70 1.5 80.
                                        YES
                                                                        YES
                   70 1.5 80.
                                         YES
                                                70 .774108-65.
                                                                        YES
   file = open(path of pch file, 'r')
   file_b = open(path_of_new_bdf_file, 'w')
   keep line = False
   keep continuation line = False
   \ensuremath{\#} Example: Suppose you only want to read PCOMP entries
   # 1 PCOMP 10000001-.0105 0.0 650000. TSAI 0.0 0.0
                                                                            SYM
```

import h5py

Questions? Email: christian@ the-engineering-lab.com

# 2	70 1.	5 80.	YES	70 .774108-	65.	YES
# 3	70 1.	5 80.	YES	70 .774108-	65.	YES
# 4 MAI # 5 PSF	ELL* 101	00001 11	.0000001 9.	09643308E+00	21000	0001*
#6*	1.000000	0E+00	0 1.	00000000E+00	0.0000000	E+00*
# 7 * # 8 SM7	-1.0500000	0E-02 9.08593	308E+00	410000001	-4 7232662	82+05*
# 9 \$*	2.277762	75E+07 3.5025	5102E+04 2	.62296904E+06	5.8526000	0E-02*
# 10 \$*	0.00000	00E+00 0.0000	00000E+00 0	.0000000E+00	0.000000	0E+00*
# 11 \$* # 12 \$*	0.00000	00E+00 0.0000	00000E+00 0	.00000000E+00	0.0000000	0E+00*
# 13 PCC	MP 100000020	105 0.0	650000.	TSAI 0.0	0.0	SYM
# 14	70 1.	5 80.	YES	70 .774108-	65.	YES
# 15 for line	/0 1. in file:	5 80.	TES	/0 .//4108-	65.	IES
if re	.match(r'^' + na	me_of_entry, 1	ine):			
#	This detects li	nes 1 and 13 w	hich is the	first line o	f the entry	
elif	re.match(r'^(*	\s+)', line) i	s None:			
#	This detects li	nes 4, 5, 6, 7	, 8, 9, 10,	11, 12 which	are other (entries not to keep
k	eep_line = False	line = False				
if ke	ep_line is True :					
د	f re.match(r'^(\ # This detect	* \s+)', line) s lines 2, 3,	: 14. 15 whic	h are continu	ation lines	of the entry
	keep_continua	tion_line = Tr	ue			
if x	match (x1) S1 1	nol is Nenet				
11 16	This detects al	l lines, excep	ot lines 8,	9, 10, 11, 12	which are	commented with \$
i	f keep_line is T	rue or keep_co	ntinuation_	line is True:		
	# Write the l	ine to a new f	lile			
	TITE_D.WITCE(iine)				
file.clos	e ()					
file_b.cl	.ose()					
<pre>ifname =</pre>	= 'main':					
# Comment	s					
# 1. This	python script o	utputs updated	I PCOMP and	CQUAD4 elemen	ts after an	MSC Nastran topometry optimization
# 2. Modi # 3. This	iy path_a and pa works as long M	th_b, then rur DLPRM.HDF5.1 i	s used, whi	t ch triggers t	he output o	f the
# INPU	T datasets to th	e H5 file. The	INPUT data	sets are the	bulk data e	ntries: GRIDs, CQUAD4s, PSHELLs,
etc.						
path a =	'/home/usera/Dow	nloads/nastrar	n working di	rectory/model	.h5'	
path_b =	'/home/usera/Dow	nloads/nastrar	_working_di	rectory/model	.pch'	
# Output	New OUAD4 Elemen	ts After Topon	netry Optimi	zation		
* ******	*****	*****	**********	***********	**********	*****
# Output	updated CQUAD4 e	ntries		- I 2D -1		, ,
read_cqua	.d4_entries_irom_	ns_and_write_t	.o_bdi(path_	a, 'new_2D_el	ements.tmp',)
# Output						
# CQUAD4*	,1,1000000001,1,	2,16,15				
# CQUAD41	,3,1000000003,3,	4,18,17				
# CQUAD4*	,4,100000004,4,	5,19,18				
# CQUAD4* # CQUAD4*		6,20,19				
# CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4*	,5,1000000005,5,	7 21 20				
# CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4*	,5,1000000005,5, ,6,1000000006,6, ,7,1000000007,7,	7,21,20 8,22,21				
# CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # []	,5,1000000005,5, ,6,1000000006,6, ,7,1000000007,7,	7,21,20 8,22,21				
# CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # []	,5,100000005,5, ,6,100000006,6, ,7,1000000007,7,	7,21,20 8,22,21 s After Topome	try Optimiz	ation		
<pre># CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # CQUAD4* # [] # Output # ###################################</pre>	,5,100000005,5, ,6,100000006,6, ,7,1000000007,7, New PCOMP Entrie	7,21,20 8,22,21 s After Topome	try Optimiz	ation ####################################		
<pre># CQUAD4* # CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # [] # Output # ####### filter_er # CQUAD4</pre>	<pre>,5,100000005,5, ,6,100000006,6, ,7,1000000007,7, New PCOMP Entrie ####################################</pre>	7,21,20 8,22,21 s After Topome ath_b, 'PSHELI	etry Optimiz ###################################	ation ####################################	######################################	*****
<pre># CQUAD4* # CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # [] # Output # ####### filter_er # Output # PCOMP</pre>	<pre>,5,100000005,5, ,6,100000006,6, ,7,1000000007,7, New PCOMP Entrie ####################################</pre>	7,21,20 8,22,21 s After Topome ####################################	etry Optimiz , 'new_psh	ation ############### ell_entries.tr 0.0 0.	########### mp') 0 SYM	*****
<pre># CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # [] # Output # ####### filter_er # Outputs # PCOMP #</pre>	<pre>,5,100000005,5, ,6,10000006,6, ,7,100000007,7, New PCOMP Entrie ####################################</pre>	7,21,20 8,22,21 s After Topome ################# ath_b, 'PSHELI 0.0 6500 80.	etry Optimiz ***********************************	ation ############### ell_entries.tu 0.0 0. .774108-65.	######################################	*****
<pre># CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # [] # Output # ###### filter_er # Outputs # PCOMP # # # # # # # # # # # # # # # # # # #</pre>	<pre>, s, 100000005, s, , 6, 100000006, 6, , 7, 100000007, 7, New PCOMP Entrie tries_from_pch(p 100000010105 70 1.5 70 1.5</pre>	7,21,20 8,22,21 s After Topome ####################################	etry Optimiz ########### ', 'new_psh 000. TSAI YES 70 YES 70 YES 70	ation ############### ell_entries.t: 0.0 0. .774108-65. .774108-65.	mp') 0 SYM YES YES	****
<pre># CQUAD4 # CQUAD4 # CQUAD4 # CQUAD4 # (] # Output # ####### filter_e # Output # PCOMP # # PCOMP # # COMP</pre>	<pre>,5,100000005,5, ,7,10000006,6, ,7,10000007,7, New PCOMP Entrie tries_from_pch (p 70 1.5 100000010105 70 1.5 100000020105 70 1.3 100000020105</pre>	7,21,20 8,22,21 s After Topome ################## ath_b, 'PSHELL 0.0 6500 80. 80. 0.0 6500 2 80.	etry Optimiz ############# ', 'new_psh 000. TSAI YES 70 YES 70 000. TSAI YES 70	ation ############## ell_entries.tr 0.0 0. .774108-65. 0.0 0. .052964-65	######################################	*****

The Python script generates a new TMP

Copy and paste the CQUAD4 elements to the original BDF file.

new_2[_elements.tmp	

Original BDF File

📄 new_	2D_elements.tmp 🗵		topm_c	s2.dat 🔀		
1	CQUAD4,48368,100000001,49013,49014,50013,50014		69	COUAD4, 48368, 100000001	.49013.49014	.50013.50014
2	CQUAD4, 48369, 100000002, 49014, 49015, 50012, 50013		70	COUAD4, 48369, 100000002	2,49014,49015	.50012.50013
3	CQUAD4, 48370, 1000000003, 49015, 49016, 50011, 50012		71	COUAD4, 48370, 100000003	3,49015,49016	,50011,50012
4	CQUAD4, 48371, 1000000004, 49016, 49017, 50010, 50011		72	CQUAD4, 48371, 100000004	49016,49017	,50010,50011
5	CQUAD4, 48372, 100000005, 49017, 49018, 50009, 50010		73	CQUAD4, 48372, 100000005	,49017,49018	,50009,50010
6	CQUAD4,48373,100000006,49018,49019,50008,50009		74	CQUAD4,48373,100000000	5,49018,49019	,50008,50009
7	CQUAD4,48374,1000000007,49019,49020,50007,50008		75	CQUAD4,48374,100000007	1,49019,49020	,50007,50008
8	CQUAD4,48375,100000008,49020,49021,50006,50007		76	CQUAD4,48375,100000008	3,49020,49021	,50006,50007
9	CQUAD4,48376,100000009,49021,49022,50005,50006		77	CQUAD4,48376,100000009	,49021,49022,	,50005,50006
10	CQUAD4,48377,100000010,49022,49023,50004,50005		78	CQUAD4,48377,100000010	,49022,49023,	,50004,50005
11	CQUAD4,48378,100000011,49023,49024,50003,50004		79	CQUAD4,48378,100000011	49023,49024,	,50003,50004
12	CQUAD4,48379,100000012,49024,49025,50002,50003		80	CQUAD4,48379,100000012	2,49024,49025,	,50002,50003
13	CQUAD4,48380,100000013,49025,49026,50001,50002		81	CQUAD4,48380,100000013	3,49025,49026,	,50001,50002
14	CQUAD4,48381,100000014,49026,49013,50014,50001		82	CQUAD4,48381,100000014	4,49026,49013,	,50014,50001
15	CQUAD4,48382,100000015,50005,48991,48990,50006		83	CQUAD4,48382,100000015	5,50005,48991,	,48990,50006
16	CQUAD4,48383,100000016,49996,48950,49997,49986		84	CQUAD4,48383,100000016	5,49996,48950,	,49997,49986
17	CQUAD4,48384,100000017,49992,49012,49007,49991		85	CQUAD4,48384,100000017	1,49992,49012,	,49007,49991
18	CQUAD4,48385,100000018,50009,50008,50000,49989		86	CQUAD4,48385,100000018	3,50009,50008,	,50000,49989
19	CQUAD4,48386,100000019,49981,49983,49995,49993		87	CQUAD4,48386,100000019	, 49981, 49983,	,49995,49993
20	CQUAD4,48387,100000020,48994,48993,50003,50002		88	CQUAD4,48387,100000020), 48994, 48993,	,50003,50002
21	CQUAD4,48388,100000021,48998,48999,49980,49978		89	CQUAD4,48388,100000021	,48998,48999,	,49980,49978
22	CQUAD4,48389,100000022,48920,48913,49952,49951		90	CQUAD4,48389,100000022	2,48920,48913,	,49952,49951
23	CQUAD4,48390,100000023,48917,49982,49950,48916		91	CQUAD4,48390,100000023	3,48917,49982,	,49950,48916
24	CQUAD4,48391,100000024,49001,49955,49977,49000		92	CQUAD4,48391,100000024	4,49001,49955,	,49977,49000
25	CQUAD4,48392,100000025,48999,49000,49977,49980		93	CQUAD4,48392,100000025	5,48999,49000,	,49977,49980
26	CQUAD4,48393,100000026,48997,48998,49978,49957		94	CQUAD4,48393,100000026	5,48997,48998,	,49978,49957
27	CQUAD4,48394,100000027,49001,49002,49954,49955		95	CQUAD4,48394,100000027	1,49001,49002,	,49954,49955
28	CQUAD4,48395,100000028,48997,49957,49958,48996		96	CQUAD4,48395,100000028	3,48997,49957,	,49958,48996
29	CQUAD4,48396,100000029,48974,48965,48963,49998		97	CQUAD4,48396,100000029	,48974,48965,	,48963,49998
30	CQUAD4,48397,100000030,50012,50011,49949,49948		98	CQUAD4,48397,100000030	,50012,50011,	,49949,49948
31	CQUAD4,48398,100000031,48914,49971,49952,48913		99	CQUAD4,48398,100000031	,48914,49971,	,49952,48913
32	CQUAD4,48399,100000032,48949,48936,49985,48951		100	CQUAD4,48399,100000032	2,48949,48936,	,49985,48951
33	CQUAD4,48400,100000033,48962,49947,49988,48964	_	4 1	COMPA JOAGO ANDOGOGOGO	Lodes tobas	10000 10000
34	COUND4 48401 1000000034 50004 48992 48991 50005				•	
.n : 33	Col: 37 Pos: 1,573 Unix (LF) UTF-8 IN	VS and	l Ln : 101	Col: 28 Pos: 3,289	Unix (LF)	UTF-8

Questions? Email: christian@ the-engineering-lab.com

(1)

Þ INS Â

new_pshell_entries.tmp

Original BDF File

Update the Original Model

The Python script generates a new TMP file.

1. Copy and paste the PSHELL elements to the original BDF file.

ew_psnell_entries.tm	p 🖂 🛛					topm_cs2					
PSHELL*	100000001	1	1.00044722E-03	1*	~	11454	PSHELL*	100000001	1	1.00044722E-03	1
*	1.0000000E+00	1	8.3333333E-01	0.0000000E+00*		11455	*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00
*			0	*		11456	*			0	
*	100000000		1 000407005 00	1.4		11457	*	100000003	1	1 000427228 02	
PSHELL	1 000000002	1	1.00043722E-03	0 0000000E+00*		11450	*	1 00000005+00	1	8 3333333337-01	1 0 0000000F±00
*	1.0000000000000000000000000000000000000	1	0.333333355-01	*		11460	*	1.00000002100	-	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
*			Ŭ			11461	*			J. J	
PSHELL*	100000003	1	1.00043550E-03	1*		11462	PSHELL*	100000003	1	1.00043550E-03	1
*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00*		11463	*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00
*			0	*		11464	*			0	
*						11465	*				
PSHELL*	100000004	1	1.00044315E-03	1*		11466	PSHELL*	100000004	1	1.00044315E-03	1
*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00*		11467	*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00
*			0	*		11468	*			0	
*	100000005		1 000444405 00			11469	DOUETT+	100000005	1	1 00044405 02	
*	1 00000005	1	1.00044449E-03	* 0,0000000 00*		11471	*	1 00000005+00	1	8 3333333337-01	0 000000000
, in the second	1.00000002+00	1	0.33333335E-01	*		11472	*	1.00000002+00	-	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
*			v			11473	*			J. J	
PSHELL*	100000006	1	1.00044048E-03	1*		11474	PSHELL*	100000006	1	1.00044048E-03	1
*	1.0000000E+00	1	8.33333333E-01	0.00000000E+00*		11475	*	1.0000000E+00	1	8.33333333E-01	0.00000000E+00
*			0	*		11476	*			0	
*						11477	*				
PSHELL*	100000007	1	1.00043752E-03	1*		11478	PSHELL*	100000007	1	1.00043752E-03	1
*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00*		11479	*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00
*			0	*		11480	*			0	
*						11481	*				
PSHELL*	100000008	1	1.00043718E-03	*1		11402	PORELL"	1 00000008+00	1	0 222222222 01	L 00000000
Ĵ.	1.00000002+00	1	0.333333351-01	0.0000000£+00*		11484	÷	1.00000002+00	1	0.333333335E-01	0.00000002+00
*			0			11485	*			0	
PSHELL*	100000009	1	1.00044466E-03	1*		11486	PSHELL*	100000009	1	1.00044466E-03	1
*	1.0000000E+00	1	8.3333333E-01	0.00000000E+00*		11487	*	1.0000000E+00	1	8.33333333E-01	0.0000000E+00
*			0	*	-				··· 🔶		
h : 1 367 520 line	s:22.79 In:33 Col:33 Pos:1	953	Unix (LE)	UTE-8 IN	IS .	length : 1.91	3.142 lines : 34.2	283 Ln:11.486 Col:17 Pos:	545,767	Unix (LF)	UTF-8
					1 41						

1

Inspection of MSC Nastran Results with the Post-processor Web App

Topometry Optimization Results – Thickness Distribution

Post-processo

< >

Post-processor Web App

- The Post-processor web app is used to inspect the MSC Nastran results.
- Consider the results of the topometry optimization which are thickness distributions.

 Refer to the Post-processor web app tutorials to learn more about MSC Nastran results.

Final Comments

The SYM and STRESS keywords should not be used together and results in UFM 7052 and 7002.

*** USER FATAL MESSAGE 7052 (DOMPTC)

ILLEGAL PROPERTY TYPE IS REFERENCED ON ENTRY .

*** USER FATAL MESSAGE 7002 (IFP10F)

NO ELEMENTS ARE REFERENCED BY ANY TOMVAR PROPERTY IDs

NOT OK

	TOMVAR	3000001	PSHELL	1	Т	.003	.001	.004
		STRESS	1.57E9					
		SYM	1		ΥZ			
ОК								
	TOMVAR	3000001	PSHELL	1	Т	.003	.001	.004
		STRESS	1.57E9					
	or							
	TOMVAR	3000001	PSHELL	1	Т	.003	.001	.004
		SYM	1		ΥZ			

End of Tutorial

