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Goal: Use Machine Learning for Nonlinear
Response Optimization

Before Optimization After Optimization
° Weight: 552021.8 > Weight: ~533714.01
° Pcr: 2435.129 N ° Pcr: ~2000.0 N
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Optimization Problem Statement

7 PSHELL1

WS PSHELL2 Y Outputs — Objective and
s PSHELL 3

X Inputs - Design Variables

Constraint Responses
x1: Thickness of PSHELL 2 [ o O I 5,
x2: Thickness of PSHELL 3 . .
Obijective

1.0<xi<5.

r0: Minimize the weight

Constraints
rl: Critical buckling load

2000.0<r1

Buckling load is based on nonlinear
buckling (post-buckling) analysis with
geometry nonlinearity and/or material
nonlinearity
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Machine
Learning Results

The entire process consists of 2 phases.

Phase A — Initial Training Data
Acquisition

This phase involves evaluating the
FE model at different sampling
points and recovering the
monitored responses for the
objective and constraints. The
recovered monitored responses
are referred to as training data.

This training data is used to train
the regression model at the start of
phase B, the machine learning
phase.

Phase B — Machine Learning

This phase involves the machine
learning process. The regression
models for the objective and
constraints are used to determine
the next sample point to evaluate.

After each sample evaluated, the
regression models are updated with
the latest training data.

This example was initially configured for a
10 sample Latin Hypercube design. After
the initial training data was required,
machine learning was executed for 20 runs.
A total of 30 runs were performed.

SOL 200 Web App - Machine Learning Results Home

Session ID: Completed
20118 successfully

Upload .csv File

CSV Import

| REEeR M a tmp_best valid_value.csv P Import

Best Valid Value

TE+5

6.BE+5

6.6E+5

6.4E+5

6.2E+5

BE+5

Best valid Value

5.BE+5

5.6E+5

5.4E+5

C—C————>

Phase A Phase B
Initial Training Data Machine Learning
Acquisition

2 3 4 5 6 7 8 9 o 1 12 13 14 15 16 17 18 19 20 21 22 23 24 2% 2% 27 28 29 30

Number of Function Evaluations
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Status

)
THE LATEST OPTIMAL SOLUTION IS:[ SAMPLE # 18 (HIN}] SAMPLE # B (MAX)
0BJECTIVE = 5.3371E+5 (MIN), 1.8599E+6 (MAX)

MAXIMUM CONSTRAINT VALUE = -8.2112E-3, -1.8731E+0 (FEASIBLE DESIGNS)

Machine
Learning Results

Objective for Each Sample

A bar chart displays the objective value Max
after each sample. A green colored bar 1E+6
indicates the constraints are satisfied for
that sample. A gray colored bar indicates 0846
the constraints are NOT satisfied for that
sample. w
pie £ 0.6E+6
2z
=]
The Status message indicates sample 18 is o
. . . 0.4E+6
the best design. Your solution will be
different.
0.2E+6
Use the horizontal bar to locate sample 18
in the table. 0 0001 0002 DOO3 0004 0005 OQODO6& 0QOO7 0008 0009 0010 0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030
The best feasible design yields an objective of Sample
5.3371E+5 with x1=1.0286 and x2=1.3661. Your Data for Each Sample
solution mlght be different. ltem le 0013 Sample 0014  Sample 0015 Sample 0016 Sample 0017 Sample 0018 Sample 0019 Sample 0020 Sample 0021 Sample 0022 Sam
* Important! The machine learning Extrema (Max/Min) Min
process involves some randomization Objective E+5 5.3620E+5 5.3360E+5 6.5471E+5 9.4400E+5 5.3371E+5 7.9820E+5 5.3575E+5 6.8654E+5 8.4526E+5 1.031
of data. A consequence of this
. . . Mormalized Constraint ~ 3E-3 -5.8220E-2 3.2651E-2 -6.4504E-1 -1.0814E+0 -B.2112E-3 -1.1351E+0 -1.0750E-2 -8.7054E-1 -1.1222E+0 -1.07
randomization is that the number of
samples needed to obta|n the Optlmum X1 E+0 1.0000E+0D 1.0812E+0 1.2062E+0 3.9655E+0 1.0286E+0 3.3280E+0 1.0584E+0 2.3455E+0 3.4666E+0 4,735
may vary. For example, when you X2 E+0 1.5314E+0 1.1946E+0 4.3823E+0 4.1242E+0 1.3661E+0 1.8472E+0 1.3311E+0 1.6804E+0 2.7952E+0 4.237
perform this example, you may obtain —
the optimum after a total of 25 runs, @ [ ]
a4 »

33 runs, 38 runs, or some other
number of runs.
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New dimensions, post machine learning, displayed in MSC Apex
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Models and Types of Learning Algorithms
in Machine Learning

Models Types of learning algorithms
> Artificial neural networks > Supervised learning
> Decision trees |o Active learning/Sequential Design J
) ° Bayesian Optimization
> Support vector machines - Classification
> Regression analysis Focusofthis | . Regressions
- Linear regression presentation > Unsupervised learning
> Polynomial regression > Semi-supervised learning
[o Gaussian Process regression ]— o Reinforcement Iearning
© Bayeslan networks > Self learning
° Genetic algorithms > Feature learning

° Sparse dictionary learning
° Anomaly detection

> Robot learning

> Association rules

The Engineering Lab 10
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Goals
Sequential Design/Active Learning

Goal - Learn how to:

1. Fit model 2. Choose next design point
MVN Conditioning Equations o Acquisition Functions (Criterions)
choose next
(X?’M Yn) — ( fit modeIJ g [design pointJ
n<n+1-« (x,Y (x))

FIGURE 6.8: Diagram of sequential design/active learning /design augmentation.

The Engineering Lab
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Optimization Problem Statement

7 PSHELL1

MmN PSHELL 2 y Outputs — Objective and
s PSHELL 3

X Inputs - Design Variables

Constraint Responses
x1: Thickness of PSHELL 2 [ o O I 5,
x2: Thickness of PSHELL 3 . .
Obijective

1.0<xi<5.

r0: Minimize the weight

Constraints
rl: Critical buckling load

2000.0<r1

Buckling load is based on nonlinear
buckling (post-buckling) analysis with
geometry nonlinearity and/or material
nonlinearity
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Fit Model

Initial Training Data

Initial Prediction Model
(surrogate model, meta model, emulator)
4500 4500
L e = -
. . L ] .
4000 N . 4000
L]
3500 3500 [,l(X)
]
8 8
2 3000 * 2 3000
@ @
m m
E::‘_ 2500 E::‘_ 2500
= =
(1] (1]
2000 2000
1500 1500
4.5 3
42 A 3-;I ° 45 A N
3:5 kS 2.5 7 x1 1"5 % 7 x1
x1: Thickness 1 x2 22 ) i 2 x2 29 5 2
x2: Thickness 2 o ; N
Response Value: Critical buckling load
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Fit Model, Continued

Initial Training Data Initial Prediction Model
(surrogate model, meta model, emulator)

\ /

4.5- '8

3.5- .1

x2
W
-
B
X2

2.5- 7

10

1.5-

x1: Thickness 1 ' ' x1 ' ' 1 2 3 4 5
x2: Thickness 2
Response Value: Critical buckling load
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mwmm |nitial Training Data Samples
mmmm Machine Learning Samples

Choose next design point

Updated Training Data

Updated Prediction Model
(surrogate model, meta model, emulator)
4500 . 4300 -
b4 o L] e -
4000 .- ®ee ° . : 4000
[ ]
3500 3500
P * ’ %
: . 8
T 3000 . 2 3000
= =3
i wn
1] m
E’:. 2500 E’:. 2500
= [=
1] m
'}_000' ZDUG
. Optimum
1'5,{)0 ‘% 15{)0
4.5
) . - 3_54 5
35 3
% 5 25 xl
w2 % 9 2
32 Ls
W F
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mwmm |nitial Training Data Samples
mmmm Machine Learning Samples

Choose next design point, Continued

Updated Training Data Updated Prediction Model
(surrogate model, meta model, emulator)

4.5- 9. .8 .8 4000
16 ” .
. 23 . 23
4 < 6 17 17
. 3500
27 28
3.5- .1
.4 -4 3000
3=
~
k3 ™y -
. . 22 . 22
29 . 2 2
95- 2 2500
‘30
2- .
. -19 '10 '19 10 ) 2000
l Optimum ‘31 ‘3 3
1.5-
4 .
5
1500
1 -
3 3
1 1.5 2 2.5 3 3.5 4 4.5 5 - 5
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Fit Model




(Gaussian Process Regression Overview

Training Data

D,,: Training data X,
(inputs) and Y,, (outputs)

Kernel (Covariance Function)*

k(x,x)=2(x,x)

MVN Conditioning Equations

pu(X) = X(X, Xn)ET:lYn (Prediction Model)
B(X) = S(X,X) - 5(X, X,)5, 'S(X, X,,) "

* Hyperparameter optimization is part of the procedure but not covered in this presentation

The Engineering Lab

Predicted Values

Mean: u(x)

Prediction Uncertainty

Variance: o2%(x)
Sometimes expressed as X (x)

19



Multivariate Normal (MVN) Conditioning
Equations

The following must be calculated: Covariance Matrix, Mean and Variance

Z(Xr X) Z(X; Xn) ) X, Training locations

Covariance Matrix X = (Z X)) 5, =X, X)) x: Testing (predictive) locations
n’ n nn

Apply the covariance function X (x, x") (kernel k(x, x"))

* X(x, x): Covariance between testing (predictive) locations and themselves

* X(x,X,): Covariance between testing (predictive) and training locations

* X(x,X,,): Covariance between training and testing (predictive) locations,
which is the transpose of Z(y, X;,)

* X, = X(X,, X,): Covariance between training locations and themselves
MVN Conditioning Equations (Mean and Variance)
Also referred to as “Gaussian process regression,” “kriging” or “kriging equations”
mearn ,UJ(X) = E(X: Xn )E;l}/n Prediction Model (Vary y to make predictions)

and variance E(,ﬁt’) — E(X:‘;t’) _ E(X: XH)E,EIE(X: XH)T Prediction Uncertainty

The Engineering Lab 20




Example 1




Example 1

Suppose a black box function was executed
at 4 different samples (x1, x2 combinations)

With limited data (x and y), what does the

response surface look like?

Training Data

ETTE ER R

-1.03
.49
1.77

H W NN

3.62

The Engineering Lab

1.76
.49
-1.77
3.76

-1.56E-02
3.04E-01
3.38E-03
5.43E-12

0.2

0.2 |

01 |

=4
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Training Data and Testing (Predictive)
Locations

Suppose you have the following training data (X,, and Y,;) and testing locations (y)
° X, : The training design consists of 4 points

° x :The test design (locations to make predictions) consists of 2 points

?
35 .69
— '95_ — 46_ R * — -'_— — —_ — e =
X 21.03  1.76 —[l’ i _ [-1.56e-02
X = P = Yn 3.04e-01
o S 3.38¢-03
1.77 -1.77 338¢-03
1362 3.76. 5. _

The goal is make predictions (y *) for points in y

Note
° Xy inputs of the training data
> Y,: outputs of the training data
° y or x: inputs of the testing data (predictive locations, i.e. points to make predictions)

° y *: predicted outputs X: upper case of Greek letter chi (pronounced kai in English)

- D,: Training data X,, and Y, x: lower case of Greek letter chi

The Engineering Lab 23




Calculation of the Covariance Matrix

1. Select a covariance (kernel) function

> Many covariance functions (kernels) exist: Radial Basis Function (RBF), Matern 5/2, 3/2,
Exponential, ...

° For this example, a form of the RBF covariance function is used. This covariance function is
described as the “inverse exponentiated squared Euclidean distance”

k(x,x) = S(z,2") = exp{~||z — '||*} =P

2. Calculate D (Distance Matrix)
D = || X-X||? “Norm between X and X, squared”

3. Calculate X' (Covariance Matrix)

y=e¢eP

The Engineering Lab 24




Calculation of D

V(35-.35)2 + (.69 - .69)27
=0

.1429

3.0493

.0596

8.068

20.1178

The Engineering Lab

2 2
J(35-.65)% + (.69 - 46)? J(35--1.03)2 + (.69 - 1.76)?
= .1429 =3.0493

J(65-.65)% + (46 - 46)? J(65--1.03)2 + (46 - 1.76)2
=0 =4.5124

2
V(35 -.49)2 + (.69 - .49)2
=.0596

(65 -.49)2 + (.46 - .49)2
=.0265

2
45124 V(-1.03--1.03)2 + (1.76 - 1.76)2
=0
.0265 3.9233
6.2273 20.3009
19.7109 25.6225

2
V(1.0 3- 49)% + (1.76 - .49)2
=3.9233

V(49 - 49)2 + (49 - 49)2
=0
6.746

20.4898

2
V(35-1.77)% + (.69 - -1.77)2
=8.068

J(65-1.77)% + (46 - -1.77)2
=6.2273

V(-1.03-1.77)2 + (1.76 - -1.77)?2
=20.3009

2
V(49 -1.77)% + (49 - -1.77)2
=6.746

V@A77 -177)2 + (-1.7 7- -1.77)?2
=0

34.0034

J(35-3.62)2 + (.69 - 3.76)2
=20.1178

2
V(.65 -3.62)% + (46 - 3.76)2
=19.7109

2
V(-1.03-3.62)2 + (1.76 - 3.76)2
=25.6225

2
V(49 -3.62)% + (49 - 3.76)2
=20.4898

2
V(.77 -3.62)2 + (-1.77 - 3.76)2
=34.0034

J(3.62-3.62)2 + (3.76 - 3.76)?
=0




Calculation of X

B e® =1 e 1429 = 8668
8668 e =1
0474 .0110
9421 9738
.0003 .0020
1.832e-9 2.8e-9

The Engineering Lab

e304%3 = 0474

e*512% = 0110

.0198

1.5e-9

7.5e-12

e05% = 9421

e0265 = 9738

e39233 = 0198

.0012

1.263e-9

e8068 = 0003

e 62273 = 0020

2203009 — {549

e®74 = 0012
el =1
1.7e-15

e 201178 = 1 832e-9

e-19.7109 =2.8e-9

256225 — 75012

7204898 — 1 763e-9

e-34.0034 = 1.7e-15




Calculation of X

Since X is symmetric, note that 2(X,,, x) = 2(x, X;,)T




Calculation of Predictive Quantities

The MVN conditioning equations are used to determine the predictive quantities mean and
variance

mean u(X) = 2(X, X)X Y,

_ s (02849657 Predicted values for locations in y
KGO =¥ = (5 5054011)

and variance X(X) = D(X, X) - L(X, X)X 18X, X,,) "

0.11154162 '0'05042265) Prediction Uncertainty

200 = (-0.05042265 0.05155061

The diagonal terms are the variances at prediction points 1 and 2

0.11154162
2 o
*(X) (0.05155061)

The Engineering Lab 28




R

Code to replicate this example in R

library(plgp)
eps = sqgrt(.Machine$double.eps)

# Training points
X = rbind(c(-1.03,1.76), c(.49,.49), c(L.77,=1.77),

# The goal is to fit this function: y(x) = x1 * exp(-x1"2 - x2"2)

y = X[, 11 * exp(-X[,117%2 - X[,21"2)

# Test points
XX = rbind(c (.35, .69),c(.65, .46))
XX

# Sigma 22 (Sigma) and its inverse (Si)

(iR iisdtissdtddadtadadsadmatadiddhddidddddiddssdissssdi
# Distance among the Training Data

D = distance (X)

Sigma = exp (-D)

Si = solve(Sigma)

# Sigma 11

C i i i i
# Distance among the Testing Data

DXX = distance (XX)

SXX = exp (-DXX)

# Sigma 12 and Sigma 21 (Transpose of Sigma 12)
C i i i

# Distance between training and testing data

The Engineering Lab

c(32.62,3.76))

DX
SX

distance (XX, X)
exp (-DX)

# Calculate the predictive mean and predictive variance
S i

# Predictive mean

mup = SX $*% Si $*% y

mup

# Predictive variance
Sigmap = SXX - SX %*% Si $*% t(SX)
Sigmap

Output

Console Terminal Jobs
=0

= § #HHERER 3 3

= # Predictive mean
= mup = SX %%% S1 ¥*% y
= mup

[1)] 0.2849657

= # Predictive variance

> Sigmap = SEX - SX ¥¥% S % t(SX)

= Sigmap

= =
[1,]1] ©.11154162 -0.03042265
[2,1}

=

9.05042265 -3.!35155&61] Variance



R
Code to replicate this example in R with Plots

library(plgp) DXX = distance (XX)
library(lhs) SXX = exp (-DXX)
eps = sgrt(.Machine$double.eps) # Sigma 12 and Sigma 21 (Transpose of Sigma 12)
# o R
# Training Data # Distance between training and testing data
#odHFE R DX = distance (XX, X)
# Training points SX = exp (-DX)
number of sample points = 4
X = rbind(c(=-1.03,1.76), c(.49,.49), c(L.77,=1.77), c(3.62,3.76)) # Calculate the predictive mean and predictive variance
# oA
# Observed values mup = SX $*% Si $*% vy
# The goal is to fit this function: y(x) = x1 * exp(-x1"2 - x2"2) Sigmap = SXX - SX %*% Si %*% t(SX)

y = X[, 1] * exp(-X[,1]1%2 - X[,2]"2)
# Predictive standard deviation

# Testing Data diag(Sigmap)
#odFFE R sdp = sqgrt(diag(Sigmap))
# Test points
number of test points_per axis = 40 # Figure 5.5
xx = seq(-2, 4, length=number of test points per axis) par (mfrow=c(l, 2))
XX = expand.grid(xx, xx) cols_a = hcl.colors (128, palette = "viridis")
cols_b = heat.colors(128)
# Sigma 22 (Sigma) and its inverse (Si) image (xx, xxX, matrix(mup, ncol=length(xx)), xlab='x1', ylab='x2', col=cols_a)
#odFFEE R R points(X[,11, X[,2])
# Distance among the Training Data image (xx, xx, matrix(sdp, ncol=length(xx)), xlab='x1', ylab='x2', col=cols_b)
D = distance (X) points(X[,1]1, X[,21)
Sigma = exp(-D) + diag(eps, nrow(X))
Si = solve(Sigma) # Figure 5.6
persp(xx, xxX, matrix(mup, ncol=number of test points per_ axis), theta=-30, phi=30,
# Sigma 11 xlab="x1"', ylab='x2"', zlab='y', zlim = c(-.5,.5))

OoRFHH AR R R R R R

# Distance among the Testing Data

The Engineering Lab




Predictive Quantities Mean and Standard
Deviation

Standard Deviation: o(y)
Mean: u(x) (Square root of variance)

Not Good — High Standard

® M T Deviation — High Variance — High
Prediction uncertainty
(Prediction is not reliable)

; T .

- Good — Low Standard Deviation
o o~ — Low Variance — Low Prediction
e — e — - . I .
uncertainty (Prediction is
‘ reliable)

c} m =] . . . .
Prediction uncertainty is
lowest near training

A - ;
data locations

o - L]

| | | | | |
2 1 0 1 2 3 4 2 1 0 1 2 3 4
x1 x1
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Comparison of True Function and
Prediction Model

True Function Prediction Model (u(x))

Gramacy & Lee[2008) Function

l;f*,' J{' ‘;’ ]
e

e

f(x) =z, exp(—zi — 23)
Source: https://www.sfu.ca/~ssurjano/grlee08.html
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Example 2




Example 2

I 1 1= O = R

4 Points 40 Points

X, : The training
design
Predicted Model (u(x)) Predicted Model (u(x))
4 Training Points 40 Training Points

True Function (f (x))

Gramacy 8L e& [ 2008) Function

R
i

il
i
‘%l

o

W
I
1
S
CEESeS
S i

RS
wi%‘:ss 2
SISO NN

jiasses
s
5

o,
o

X
“‘\“.s
s
5
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%
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2!
X
0

T
T

5
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S
o
oS

3
%

o)

e
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R

Code to replicate this example in R with more training data

library(plgp) #OHHE AR R
library(lhs) # Distance among the Testing Data
DXX = distance (XX)
eps = sqgrt(.Machine$double.eps) SXX = exp (-DXX)
# Training Data # Sigma 12 and Sigma 21 (Transpose of Sigma 12)
#odHFE R # o E AR
# Training points # Distance between training and testing data
number of sample points = 40 DX = distance (XX, X)
X = randomLHS (number of sample points, 2) SX = exp (-DX)
X[,11 = (X[,1]1 - .5) * 6 + 1
X[,2] = (X[,2] = .5) * 6 + 1 # Calculate the predictive mean and predictive variance
# oA R
# Observed values mup = SX $*% Si $*% vy
# The goal is to fit this function: y(x) = x1 * exp(-xl1"2 - x2"°2) Sigmap = SXX - SX %*% Si $*% t(SX)

y = X[, 1] * exp(-X[,1]1%2 - X[,2]"2)
# Predictive standard deviation

# Testing Data diag(Sigmap)
#odFFE R sdp = sqgrt(diag(Sigmap))
# Test points
number of test points_per axis = 40 # Figure 5.5
xx = seq(-2, 4, length=number of test points per axis) par (mfrow=c(l, 2))
XX = expand.grid(xx, xx) cols_a = hcl.colors (128, palette = "viridis")
cols_b = heat.colors(128)
# Sigma 22 (Sigma) and its inverse (Si) image (xx, xx, matrix(mup, ncol=length(xx)), xlab='x1', ylab='x2', col=cols_a)
#odHFEE R points(X[,11, X[,2]1)
# Distance among the Training Data image (xx, xx, matrix(sdp, ncol=length(xx)), xlab='x1', ylab='x2', col=cols_b)
D = distance (X) points(X[,1]1, X[,21)
Sigma = exp(-D) + diag(eps, nrow(X))
Si = solve(Sigma) # Figure 5.6
persp(xx, xxX, matrix(mup, ncol=number of test points per axis), theta=-30, phi=30,
# Sigma 11 xlab="x1"', ylab='x2"', zlab='y', zlim = c(-.5,.5))
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Predictive Quantities Mean and Standard
Deviation

Standard Deviation: o(y)

Mean: :
ean: u(x) (Square root of variance)
< <
Not Good — High Standard
™ ™ Deviation — High Variance — High
Prediction uncertainty
(Prediction is not reliable)
(] (3]
- Good — Low Standard Deviation
o o — Low Variance — Low Prediction
- —
> > uncertainty (Prediction is
reliable)

c c . . . .
Prediction uncertainty is
lowest near training

— — .

' ' data locations

(3] (9]
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Comparison of True Function and
Prediction Model

True Function Prediction Model (u(x))

Gramacy & Lee[2008) Function

’#ﬂn“
Pk

N

f(x) =z, exp(—zi — 23)
Source: https://www.sfu.ca/~ssurjano/grlee08.html
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(Gaussian Process Regression Overview

Training Data

D,,: Training data X,
(inputs) and Y,, (outputs)

Kernel (Covariance Function)*

k(x,x)=2(x,x)

MVN Conditioning Equations

pu(X) = X(X, Xn)ET:lYn (Prediction Model)
B(X) = S(X,X) - 5(X, X,)5, 'S(X, X,,) "

* Hyperparameter optimization is part of the procedure but not covered in this presentation

The Engineering Lab

Predicted Values

Mean: u(x)

Prediction Uncertainty

Variance: o2%(x)
Sometimes expressed as X (x)
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Goals
Sequential Design/Active Learning

Goal - Learn how to:

1. Fit model 2. Choose next design point
MVN Conditioning Equations o Acquisition Functions (Criterions)
choose next
(X?’M Yn) — ( fit modeIJ g [design pointJ
n<n+1-« (x,Y (x))

FIGURE 6.8: Diagram of sequential design/active learning /design augmentation.

The Engineering Lab
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Explanation of Sequential Design/Active Learning

1. The black box function (MSC Nastran) is 2. The training data (X, Y,) is used in the 3. Acquisition functions are used to
evaluated at different samples (X,). The MVN equations to yield the mean () and determine a new point x that may yield a
outputs (Y,), or responses, are collected. variance functions 02()(). better sample. :

R

choose next
(X'm Yn) E ( fit model J g [design pointJ

5. Since a new training point(x, Y (x)) is n <—n _|_ 1 < (3;- Y(:C))
available, the model is updated and the ! S
process is repeated. '
4.Y(x): The black box function (MSC

Nastran) is evaluated at this new x.
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Acquisition Functions




Acquisition Functions

Objective Constraints

Expected Probability of Probability of
Improvement Improvement Feasibility, or

EY

Criterion

(El) Criterion (P1) Satisfaction (POF) B aye S i a n
' Optimization

Joint Acquisition Expected Feasible Improvement (EFI)

Xp41 = ArgMmaxye, EFI(x)
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Bayesian Optimization

“Suppose we have a function f : y - R that we with to minimize on some domain X C y . That is, we wish to find

x* = argmin f(z).
reX
In numerical analysis, this problem is typically called (global) optimization and has been the subject of decades of study. We draw a
distinction between global optimization, where we seek the absolute optimum in X, and local optimization, where we seek to find a local
optimum in the neighborhood of a given initial point x.

A common approach to optimization problems is to make some assumptions about f. For example, when the objective function f is
known to be convex and the domain X is also convex, the problem is known as convex optimization and has been widely studied. Convex
optimization is a common tool used across machine learning.

If an exact functional form for f is not available (that is, f behaves as a ‘black box’), what can we do? Bayesian optimization proceeds by
maintaining a probabilistic belief about f and designing a so called acquisition function to determine where to evaluate the function next.
Bayesian optimization is particularly well-suited to global optimization problems where f is an expensive black-box function; for example,
evaluating f might require running an expensive simulation. Bayesian optimization has recently become popular for training expensive
machine-learning models whose behavior depend in a complicated way on their parameters (e.g., convolutional neural networks). This is
an example of the ‘AutoML’ paradigm.”

Garnett, R. (2015, March 16). Lecture 12: Bayesian Optimization. Lecture presented at CSE 515T:
Bayesian Methods in Machine Learning — Spring 2015 in Washington University in St. Louis, St. Louis.
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Acquisition Functions

Objective

predictive surface

EY —— mean

Criterion

-q- ]
EY Criterion _
'l ::: ]
Xn+1 = ArgMminye, ,u(x)
|
¥ - |
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predictive surface El

° ° ° — Mmean ,»’{'"_“‘« 5 N
® o ---- 95%PI ’
Acquisition N
. ’ 3 - [
[=]
Functions * : |
- ¢ |
0 | |
Objective ° ° :
. o :
EY Expected Y § - |
Improvement I I 1 | | | 1 | | I | I I | |
Criterion {El) Criterion 0 2 4 6 8 10 12 0 2 4 6 8 10 12
y Xn+1 <
predictive surface El
Expected Improvement (El) Criterion S A S
........ fmin ,,’ .
Bl(2) = (/24 — fin (2) B L0~ n(2) ) ‘ |
min Jn(il?) - o
r?lin — Hn (5’3) 0|
+gn($)¢'( O'n(ﬂ.?) ) (=} =
o * ’,’ I
= exploitation + exploration I
I S - |
| I 1 | | I I © | | | I I | |
xn+1 — argmaxxe)( El(x) 0 2 4 6 8 10 12 0 2 4 6 8' 10 12
x x Xn+1
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Acquisition Functions

Objective

o n: number of function evaluations

Expected

EY
Improvement

(El) Criterion

[e]

fomin: Best observed objective value

Criterion

> u(x): Mean function from the MVN conditioning equations

Expected Improvement (El) Criterion
> 02(x): Variance function from the MVN conditioning

n in — Hn (1) equations
> @: cumulative distribution function (CDF) of the n-
n_ — n :B . . . . . . .
+ op(z) o 2 fn (%) dlmenS|onaI multivariate normal distribution (Uppercase
on(x) Phi)

= exploitation + exploration
> ¢: probability density function (PDF) of the n-dimensional

multivariate normal distribution (Lowercase Phi)
Xp4+1 = Argmaxye, EI (x)
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Acquisition Functions

Objective

More about ® and ¢

Expected v Multivariate Normal Distribution

EY

Improvement

Criterion (El) Criterion

Expected Improvement (El) Criterion

El(z) = (fin — #n(2)) © Iﬁh;;(;t;;(:r)

= exploitation + exploration

Xp4+1 = Argmaxye, EI (x)

The Engineering Lab

The multivariate normal distribution is a generalization of the univariate normal
distribution to two or more variables. It has two parameters, a mean vector g and a
covariance matrix X, that are analogous to the mean and variance parameters of a
univariate normal distribution. The diagonal elements of X contain the variances for each
variable, and the off-diagonal elements of X contain the covariances between variables.

The probability density function (pdf) of the d-dimensional multivariate normal distribution
is

y=flnpuX)= |E|1(23r)" exp(—%(x—,u) E"(x-,u)')

where x and u are 1-by-d vectors and X is a d-by-d symmetric, positive definite matrix.
Only mvnrnd allows positive semi-definite £ matrices, which can be singular. The pdf
cannot have the same form when X is singular.

The multivariate normal cumulative distribution function (cdf) evaluated at x is the
probability that a random vector v, distributed as multivariate normal, lies within the semi-
infinite rectangle with upper limits defined by x:

Pr{v(1) < x(1).v(2) < x(2),....v(d) < x(d)}.

Although the multivariate normal cdf does not have a closed form, mvncdf can compute
cdf values numerically.

Source: https://www.mathworks.com/help/stats/mvnpdf.html




Acquisition Functions

Objective

When El does not yield a good solution, use PI.

EY Expected Probability of

improvement | Improvement For example, for optimization problems with 10 or
(El) Criterion ) more parameters, El performs poorly but Pl
performs well.

Criterion

Probability of Improvement (PI) Criterion

on(x)

PI(z) = ® (frﬁin - ,un(m})

= exploitation

Xp4+1 = Argmaxye, Pl (x)
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Acquisition Functions

Objective Constraints

Probability of
Feasibility, or
Satisfaction (POF)

Probability of
Improvement Improvement
(El) Criterion (P1)

EY Expected

Criterion

Probability of Feasibility, or Satisfaction (POF)
> Suppose you have constraints of this form
c(x) <0
> Probability of satisfaction (feasibility) (POS or POF)

pof = H 129'513 )( )
=pP () - pP () - p{™ (%)
where u9)
i . (x)
i () = (ﬂ(m)

The Engineering Lab

(o}

o

(e}

n: number of function evaluations
m: Number of normalized constraints

j: The jth normalized constraint

(J)(x) Probability of satisfaction (feasibility) for normalized constraint j

IT: Product of a sequence (Greek uppercase letter pi), similar to addition of
a sequence (Z) but you perform the product operation instead

1(x): Mean function from the MVN conditioning equations
02 (x): Variance function from the MVN conditioning equations

®: cumulative distribution function (CDF) of the n-dimensional multivariate
normal distribution
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Acquisition Functions

Objective Constraints Suppose you have this constraint,
-15,000 < Ogtress < 20,000
EY Expected Probability of Probability of 1. The training data is used to create normalized constraints for
Criterion |mpr0\{em'ent Improvement Feasibility, or the lower and upper bounds
Bl (P1) Satisfaction (POF) 2. You need to calculate the mean and variance for both the

lower and upper bounds

3. Then you calculate the probability for all normalized

Probability of Feasibility, or Satisfaction (POF) constraints
> Suppose you have constraints of this form 4. And take the product
c(x) <0
> Probability of satisfaction (feasibility) (POS or POF) 1P ), 62 @ ()
(4)
pof = [ pi’ (%) 4@ 00,02 P )
(1
=p (@) (0 o™ ()
where
() (1) — i () pof = pr () - i (%)
pn (I) =&
(J)(:B)
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Acquisition Functions

Objective Constraints

Expected Probability of Probability of
Improvement Improvement Feasibility, or

(EI) Criterion (P1) Satisfaction (POF)

EY

Criterion

Joint Acquisition Expected Feasible Improvement (EFI)

Xp41 = ArgMmaxye, EFI(x)

Expected Feasible Improvement (EFI) When calculating EI(x)

EFI(x) = EI(x) - POF(x) ° fmin: Best observed objective value of only the valid

g
Xny1 = ArgmaXyey EFI(x) esiens
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Goals
Sequential Design/Active Learning

Goal - Learn how to:

1. Fit model 2. Choose next design point
MVN Conditioning Equations o Acquisition Functions (Criterions)
choose next
(X?’M Yn) — ( fit modeIJ g [design pointJ
n<n+1-« (x,Y (x))

FIGURE 6.8: Diagram of sequential design/active learning /design augmentation.

The Engineering Lab
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Settings in the Machine
Learning Web App




Explanation of Sequential Design/Active Learning

The following can be controlled:
* n_iter
e acquisition_function_objective

1. The black box function (MSC Nastran) is 2. The training data (X, Y,) is used in the 3. Acquisition functions are used to
evaluated at different samples (X,). The MVN equations to yield the mean () and determine a new point x that may yield a
outputs (¥,), or responses, are collected. variance functions o2 (y). better sample.

______________________
1 | 1

(X n, Y, — ( fit nilodel J > [‘““"5“- "e"tJ _____________ :

design point |
|
(oo omseosooesooooooooo T n_iter l acquisition_function_objective
5. Since a new training point(x, Y (x)) is n <—n _|_ 1 < (3;- Y(:C))
available, the model is updated and the !

process is repeated. '
4.Y(x): The black box function (MSC
Nastran) is evaluated at this new x.
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Settings

The Machine Learning Web App allows you to
control the following:

o n_iter: This is the number of machine learning
iterations. The total number of MSC Nastran runs is
the sum of number of samples and n_iter. (Default =
20)

° acquisition_function_objective: This specifies the
criterion used to improve the objective

° Options:
° Expected Improvement

© Probability of Improvement

The Engineering Lab

Nastran SOL 200 Web App - Machine Learning  Parameters ~ Samples  Responses  Download  Results
Settings
Procedure
Machine Learning v
Advanced Settings
Setting Description Configure
Bayesian Optimization
This is the number of machine learning iterations.
n_iter The total number of MSC Nastran runs is the sum 20
of number of samples and n_iter. (Default = 20)
Acquisition Function
Acquisition function to use for the objective (Default "

acquisition_function_objective Expected Improvement

= Expected Improvement)




Settings
n_iter

n_iter: This is the number of machine
learning iterations. The total number of
MSC Nastran runs is the sum of number
of samples and n_iter. (Default = 20)

° For example, if n_iter=50, the machine
learning process will run until 50 points
are evaluated. The following happens in
1 iteration:

° The model is fitted
° The next design point is chosen by finding x4

that maximizing the acquisition function (X Y ) ] e . choose next
> Run MSC Nastran at x4 nydn)— It mode >

design point
> This is similar to the DESMAX option on

n_iter l
the DOPTPRM entry when using MISC
Nastran SOL 200 n<n+1-< (2, Y (x))

° Repeat T

FIGURE 6.8: Diagram of sequential design/active learning /design augmentation.
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Best Valid Value

0.03

Settings

acquisition _function_objective

0.025

0.02

Best Valid Value

acquisition_function_objective: This specifies the criterion used to

0.015

improve the objective
© Options: @
0.01
© Expected Improvement f ~—]
50 100 LSCI 200 250
> Probability of Improvement _
Number of Function Evaluations

. . ) Best Valid Value
For problems with 10 or more parameters, the design space is

significantly large. If the El criterion is used, the design space is
thoroughly searched for extrema but is time consuming as the
design space increases. The Pl is a good alternative. o

0.03

e
=]
=

Consider the optimization results of a 16 parameter optimization,
shown in the images to the right.

Best Valid Value

0.015

A. The El criterion requires a lot of searches before a better
design is found. This search is global.

=1
o
=]

0.005

B. Pl requires fewer searches. This search is local.

50 100 50 200 250

Number of Function Evaluations
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Conclusion

Models Types of learning algorithms
> Artificial neural networks > Supervised learning
> Decision trees |<> Active learning/Sequential Design J
) ° Bayesian Optimization
> Support vector machines - Classification
> Regression analysis Focusofthis | . Regressions
- Linear regression presentation > Unsupervised learning
> Polynomial regression > Semi-supervised learning
[0 Gaussian process regression ]— o Reinforcement Iearning
© Bayeslan networks > Self learning
° Genetic algorithms > Feature learning

° Sparse dictionary learning
° Anomaly detection

> Robot learning

> Association rules
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Conclusion

Sequential Design/Active Learning
> Fit model: MVN Equations

mmmm |nitial Training Data Samples
mmmm Machine Learning Samples
4500 R
° Choose next design point: Acquisition Functions .
4000 ‘.
(X Y. )___) R cho.ose next 3500 ,u(x)
ny - n design point ™
T l B 3000
2
[
n<+<n+1 (x,Y (x)) 5 2500
(4]
FIGURE 6.8: Diagram of sequential design/active learning/design 2000
augmentation.
1500
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When do | use Machine Learning?

Gradient-Based Optimizer Machine Learning
© SOL 200 > Bayesian Optimization
° Linear Responses o Little is known about the response function
© SOL 101, 103, 105, 107, 108, 110, 111, 112, 144 and 145 © @Gradients are not available or expensive to compute
> Number of Variables > Nonlinear responses (SOL 400, 700)
> 1-1,000s > Solver runs are time consuming

> Number of Parameters
o 1-20 Parameters, Research

> 1-16 Parameters, Tested

The Engineering Lab
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For the training data, how many runs per

parameter?

5 runs per parameter (Tested for 1-16
parameters)

The Engineering Lab

Best Valid Value

|
= Phase A ] Phase B
= et .. . .
z Initial Training Data ! Machine Learning
@ 0.015 . ey
Z Acquisition ]
3 |
[ai]
0.01 !
L
I
|
0.005 I
1
! | I
50 100 150 200 230
Mumber of Function Evaluations
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For higher dimensions, | do not reach the
extrema (minimum/maximum). Why?

For higher dimensions, the design
space is very large. Numerous function
runs are required to search the large
design space.

° Recommendations:

1. Run machine learning with both El and PI
acquisition functions

2. Perform a secondary machine learning where
the design space is reduced to the
neighborhood of the previous best optimum

3. Run a gradient-based optimizer

“The optimal design is the last best
feasible design”

The Engineering Lab

Best Valid Value

TE+5

6.8E+5

[

@ 6.GE+S

Best Valid Val

8.4E+5

6.2E+3

6E+5

[

7

8

9 10 11 12 13 14 15 %6 17 18 19 20 22 23 24

Number of Function Evaluations

25

26 27 I8 29 30

63




Common Terminology




Common Terminology

Black Box Function: This is the FEA solver, such as MSC Nastran, CFD solver, or custom analysis code that generates outputs/responses.

Prediction Model: This model or function is used to predict the output of black box functions. Prediction model has many names in the machine
learning world including emulator, surrogate model and meta model. In this work, the prediction model will correspond to the mean function u(x).

Training Point: This is the x input and corresponding y output after running the black box function one time.

Training Data: This is all the x inputs and collected y outputs that will be used in the multivariate normal (MVN) conditioning equations that yields
the mean function (prediction model) and variance function. Said another way, the training data is the x and y values that are used to train, or
construct, the prediction model.

Testing Data: This is all the x inputs and collected y outputs (true y outputs). Predictions are made at these x inputs and should come close to
matching the true y outputs.

Gaussian Process Model: Below is one form of the Gaussian Process (GP) model and is read as follows, “The output, Y (x), given some observed
outputs, D, is a multivariate normal distribution (. / ) with mean function u(x) and a variance function o(x).” The GP model is needed for
stochastic outputs. Since we are interested only in deterministic outputs generated by FEA, MSC Nastran or CFD, we ignore . / "and only need to
determine the mean function and variance functions, or u(x) and o2(x), respectively.

Y(z) | Dy ~ N (u(x),0%())

Gaussian Process Regression: This refers to the procedure used to obtain a Gaussian Process model. The procedure includes: kernel function
selection, training data acquisition, kriging or applying the multivariate normal conditioning (MVN) expressions, which output the mean and
variance functions. The mean function and variance functions are used in a final multivariate normal distribution (. / ).
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Thank You

christian @the-engineering-lab.com
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