Workshop - Automated Optimization of a Composite Laminate

AN MSC NASTRAN SOL 200 TUTORIAL

Goal: Use Nastran SOL 200 Optimization

Objective: Minimize the weight of this cylinder composed of a composite laminate

Before Optimization

- Weight: 1.60 $lb_f \cdot s^2/in$
- Layup: [85/-85/60/-60/60/-60/85/-85]
- Thickness: .0100 in
- Plies are initially in failure

After Optimization

- Weight: 1.04 $lb_f \cdot s^2/in$
- Layup: [90/-90/0/0/0/0/90/-90]
- Thickness: .0065 in

Details of the Structural Model

Allowed to translate in x and y

Details of the Structural Model

Optimization Problem Statement

Design Variables

Design Variables

More Information Available in the Appendix

The Appendix includes information regarding the following:

- Frequently Asked Questions
 - What are the ways of specifying allowable discrete values for design variables?
 - Why do the orientation angles not change?

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

Before Continuing

Consider the New Composite Laminate Optimization Tutorials – Composite Coupon

Visit the User's Guide to access the newest tutorials.

	Title and Description	PDF Tutorial	YouTube Tutorial
	 Composite Coupon – Phase A – Determination of the optimal 0° direction of a composite The goal of this 5-phase tutorial series is to optimize a composite coupon, with a core, and produce a lightweight composite that satisfies failure index constraints. The optimal ply shapes (ply drop-offs) and ply numbers are determined for 0°, ±45°, and 90° plies. A stacking sequence optimization is performed to satisfy manufacturing requirements. One important part of optimizing composites is visualizing the composite plies. This tutorial series also demonstrates the visualization of ply drop-offs, tapered plies and core layers. This first phase involves determining the optimal 0° direction of a composite. It is best practice to align the 0° plies in the direction of the load. Not doing so will more than likely produce a suboptimal composite that is heavier than necessary. This tutorial demonstrates the use of MSC Nastran's optimizer to determine the optimal 0° direction of a composite. An optimization is performed to maximize the stiffness of the composite for multiple load cases and while varying the angle of the 0° plies. Ultimately, the best 0° direction is determined. This is the first phase in a 5-phase tutorial series. 	Link	Link
	Composite Coupon – Phase B – Baseline Ply Number Optimization This tutorial demonstrates how to configure a basic ply number optimization of continuous plies that span the entire model. The goal of this tutorial is to demonstrate basic actions such as creating variables, a weight objective and constraints on failure index. The results of this ply number optimization serve as a baseline for future comparisons. In a subsequent tutorial, the ply shapes will be optimized to minimize weight. This is the second phase in a 5-phase tutorial series.	<u>Link</u>	<u>Link</u>
~	Composite Coupon – Phase C – Data Preparation for Ply Shape Optimization This tutorial is a guide to preparing data for ply shape optimization in a subsequent tutorial. The maximum failure index values of the outer plies of the composite are determined and saved to specially formatted PLY000i files. The PLY000i files will be used to construct optimal ply shapes in a subsequent tutorial. This is the third phase in a 5-phase tutorial series.	<u>Link</u>	<u>Link</u>
s? Email:	christian@ the-engineering-lab.com	10	

Questions? Email: christian@ the-engineering-lab.com

Q

Before Continuing

Consider the New Composite Laminate Optimization Tutorials – Composite Coupon, Continued

Visit the User's Guide to access the newest tutorials.

	Title and Description	PDF Tutorial	YouTube Tutorial
	Composite Coupon – Phase D – Ply Shape and Ply Number Optimization This tutorial details the process to build optimal ply shapes and perform a ply number optimization. The optimal ply shapes are constructed to follow the contours of the failure indices. The ply number optimization involves minimizing weight and constraining the failure indices of plies. The PLY000i files and BDF files from the previous tutorial, phase C, are used in this tutorial. This is the fourth phase in a 5-phase tutorial series.	<u>Link</u>	<u>Link</u>
Before After	Composite Coupon – Phase E – Stacking Sequence Optimization This tutorial involves performing a stacking sequence optimization and is a continuation of the previous tutorial, phase D. A final statics analysis is performed to confirm the optimized composite satisfies failure index constraints. This is the fifth phase in a 5-phase tutorial series.	<u>Link</u>	<u>Link</u>

	\sim	. •	
Betore	(0)	ntin	uing
	\mathbf{C}		0' ' N

Consider the New Composite Laminate Optimization Tutorials – Sandwich Composite Panel

Visit the User's Guide to access the newest tutorials.

	Title and Description	PDF Tutorial	YouTube Tutorial
	 Sandwich Composite Panel – Phase B – Baseline Core Thickness Optimization The goal of this 3-phase tutorial series is to optimize a curved composite panel, with a core, and produce a lightweight composite that satisfies constraints on the buckling load factor. This tutorial series focuses exclusively on optimizing the thickness of the core. The methods detailed in the tutorial series are applicable to both foam and honeycomb cores. This tutorial demonstrates how to configure a basic core thickness optimization where the core has a constant thickness throughout the entire model. The goal of this tutorial is to demonstrate basic actions such as creating variables, a weight objective and constraints on the buckling load factor. The results of this core thickness optimization serve as a baseline for future comparisons. In a subsequent tutorial, the core will be allowed to have a variable thickness throughout the model and will be optimized to minimize weight. This is the first phase in a 3-phase tutorial series. 	Link	<u>Link</u>
	Sandwich Composite Panel – Phase C – Topometry Optimization to Determine Optimal Core Shape This tutorial is a guide to preparing data for core shape and core thickness optimization in a subsequent tutorial. A topometry optimization is performed in this tutorial to determine the ideal thickness distribution of the core throughout the entire composite panel while satisfying constraints on the buckling load factor and minimizing weight. The results of a topometry optimization are contained in the PLY000i files and will be used to construct optimal core shapes in a subsequent tutorial. This is the second phase in a 3-phase tutorial series.	<u>Link</u>	<u>Link</u>
	Sandwich Composite Panel – Phase D – Core Shape and Core Thickness Optimization This tutorial details the process to build optimal core shapes and perform a core thickness optimization. The optimal core shapes are constructed to follow the contours of thickness results generated by a topometry optimization. The core thickness optimization involves minimizing weight and constraining the buckling load factor. The PLY000i files and BDF files from the previous tutorial, phase C, are used in this tutorial. Comparisons are made between this optimization in phase D and the baseline optimization performed in phase B. This is the third phase in a 3-phase tutorial series.	<u>Link</u>	<u>Link</u>
Questions? Email	: christian@ the-engineering-lab.com HEXAGON	12	

Tutorial

Tutorial Overview

- 1. Start with a .bdf or .dat file
- 2. Use the SOL 200 Web App to:
 - Convert the .bdf file to SOL 200
 - Design Variables
 - Design Objective
 - Design Constraints
 - Perform optimization with Nastran SOL 200
- 3. Plot the Optimization Results
- 4. Update the original model with optimized parameters

Special Topics Covered

Discrete Values for Design Variables - This example has a requirement where the design variables can only take on specific values. Instead of an optimization solution where the values may be 45.23423 or 15.90234, the use of Discrete Values will allow specific values to be obtained such as 45.0 or 16.0. This tutorial showcases a feature to specify specific values that can be taken by the design variables.

Design Variable Linking - In some situations, one design variable will drive the values of other design variables. For example, the thickness of one section will be the same for other sections. This tutorial demonstrates the use of Design Variable Linking to address such examples.

x2 = x1	
x4 = x1	
x5 = x1	

SOL 200 Web App Capabilities

Compatibility

- Google Chrome, Mozilla Firefox or Microsoft Edge Installable on a company laptop, workstation or
- Windows and Red Hat Linux

server. All data remains within your company.

The Post-processor Web App and HDF5 Explorer are free to MSC Nastran users.

Benefits

entries.

- REAL TIME error detection. 200+
- error validations.
- REALT TIME creation of bulk data
- Web browser accessible
- Free Post-processor web apps
 - +80 tutorials

Web Apps

Web Apps for MSC Nastran SOL 200 Pre/post for MSC Nastran SOL 200. Support for size, topology, topometry, topography, multi-model optimization.

Shape Optimization Web App Use a web application to configure and perform shape optimization.

Machine Learning Web App Bayesian Optimization for nonlinear response optimization (SOL 400)

Remote Execution Web App Run MSC Nastran jobs on remote Linux or Windows systems available on the local network

PBMSECT Web App Generate PBMSECT and PBRSECT entries graphically

Dynamic Loads Web App Generate RLOAD1, RLOAD2 and **DLOAD** entries graphically

Ply Shape Optimization Web App Optimize composite ply drop-off locations, and generate new **PCOMPG** entries

Stacking Sequence Web App Optimize the stacking sequence of composite laminate plies

browser on Windows and Linux

HDF5 Explorer Web App Create graphs (XY plots) using data from the H5 file

Before Starting

 Ensure the Downloads directory is empty in order to prevent confusion with other files

- Throughout this workshop, you will be working with multiple file types and directories such as:
 - .bdf/.dat
 - nastran_working_directory
 - .f06, .log, .pch, .h5, etc.
- To minimize confusion with files and folders, it is encouraged to start with a clean directory.

The Engineering Lab

Go to the User's Guide

1. Click on the indicated link

• The necessary BDF files for this tutorial are available in the Tutorials section of the User's Guide.

Select a web app to begin Before After Optimization for SOL 200 Multi Model Optimization Machine Learning | Parameter HDF5 Explorer Viewer Study Tutorials and User's Guide (1)Full list of web apps

SOL 200 Web App

Obtain Starting Files

Find	the	indicated	evamnle
1 IIIU	uie	multateu	елаптріе

- 2. Click Link
- 3. The starting file has been downloaded

• When starting the procedure, all the necessary BDF files must be collected together.

Open the Correct Page

Click on the indicated link

- MSC Nastran can perform many optimization types. The SOL 200 Web App includes dedicated web apps for the following:
 - Optimization for SOL 200 (Size, Topology, Topometry, Topography, Local Optimization, Sensitivity Analysis and Global **Optimization**)
 - Multi Model Optimization
 - Machine Learning
- The web app also features the HDF5 Explorer, a web application to extract results from the H5 file type.

SOL 200 Web App

Select a web app to begin

Machine Learning | Parameter Study

Full list of web apps

HDF5 Explorer

Viewer

Upload BDF Files

- Click 1. Select Files and select d200c01.bdf
- 2. Click Upload Files

The process starts by uploading all the necessary BDF files. The BDF files can be files of your own or files found in the Tutorials section of the User's Guide.

Step 1 -	Upload	.BDF	Files
----------	--------	------	-------

Create Design Variables

- 1. In the search box, type 't'
- 2. Click twice on the Property column header to sort the column in decreasing order
- 3. Type in 16 to show only 16 rows
- 4. Click + Options
- 5. Click Create
- There are 2 methods to create the 16 design variables: Click each blue plus icon, which requires 16 mouse clicks, OR click the yellow Create icon, which requires 1 mouse click.
- Each step has hidden functionality for advanced users. The visibility is controlled by clicking + Options.
- If the property entry, e.g. PSHELL, was given a name in Patran, e.g. Car Door, the name can be shown by marking the checkbox titled Entry Name.

Step 1 - Select design properties

(4) + Options

Display Type	% Lower Bound	% Upper Bound	Lower Bound	Upper Bound	Allowed Discrete Values or Equation	Bulk Create
	(8	2		
DVXREL1	Lower	Upper	Lower	Upper	Allowed discrete values, example: -2.0, 1.0, THRU, 10.0, BY, 1.0	
DVXREL1 Unity	Lower	Upper	Lower	Upper	Allowed discrete values, example: -2.0, 1.0, THRU, 10.0, BY, 1.0	
DVXREL2	Lower	Upper	Lower	Upper	Type equation here, example: y1**2 + x2 + k3	

Display Columns

Create DVXREL1 Create Unity DVXREL1 Create DVXREL2 Entry Name

Settings for row filtering in tables

Create DVXREL1	Property 🔺 🔵	Property Description \ddagger	Entry 😄	Entry ID \$	Current Value ≑				
	t (1)	Search	Search	Search	Sear	ch			
÷	T1	Thickness of ply	PCOMP	1	.01				
•	T2	Thickness of ply	PCOMP	1	.01	.01			
+	Т3	Thickness of ply	PCOMP	1	.01				
•	Т4	Thickness of ply	PCOMP	1	.01				
+	Т5	Thickness of ply	PCOMP	1	.01				
(+)	Т6	Thickness of ply	PCOMP	1	.01				
+	Т7	Thickness of ply	PCOMP 1		.01				
+	Т8	Thickness of ply	PCOMP	1	.01				
+	THETA1	Orientation angle of ply	PCOMP	1	85.				
+	THETA2	Orientation angle of ply	PCOMP	1	-85.				
+	THETA3	Orientation angle of ply	PCOMP	1	60.				
+	THETA4	Orientation angle of ply	PCOMP	1	-60.				
+	THETA5	Orientation angle of ply	PCOMP	1	60.				
(+)	THETA6	Orientation angle of ply	PCOMP	1	-60.				
(+)	THETA7	Orientation angle of ply	PCOMP	1	85.				
+	THETA8	Orientation angle of ply	PCOMP	1	-85.				
« 1 2 »				5	10	20	30	40	50

Create Design Variables

- 1. Click 20 on the pagination bar
- 2. 16 design variables have been created
 - 8 design variables have been created for the layer thicknesses
 - 8 design variables have been created for the layer angles
- In some instances, the optimizer will vary a positive design variable and make it negative, e.g. a thickness of .08 becomes
 .01 in a weight minimization optimization. Certain properties, such as thickness or beam cross sections should never be negative. The lower bound in this example is set to .001 to avoid a negative variable during the optimization.
- In some scenarios, the use of 0 degrees for the initial value of an orientation angle may be unsuccessful. An alternative is to use 360 degrees as the initial value.

Step 2 - Adjust design variables

+ Options

		Label ≑	Status 💠	Property ≑	Property Description $\mbox{$\ddagger$}$	Entry ≑	Entry ID 💠	Initial Value	Lower Bound	Upper Bound	Allowed Discrete Values
		Search	Search	Search	Search	Search	Search	Search	Search	Search	Search
	×	x1	0	T1	Thickness of layer 1 (85°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x2	0	T2	Thickness of layer 2 (-85°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
2	×	x3	0	Т3	Thickness of layer 3 (60°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x4	٥	Τ4	Thickness of layer 4 (-60°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x5	0	Т5	Thickness of layer 5 (60°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	xб	0	Т6	Thickness of layer 6 (-60°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	х7	0	Τ7	Thickness of layer 7 (85°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x8	0	Т8	Thickness of layer 8 (-85°)	PCOMP	1	.01	.001	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x9	٥	THETA1	Theta of layer 1 (85°)	PCOMP	1	85.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x10	0	THETA2	Theta of layer 2 (-85°)	PCOMP	1	-85.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x11	0	THETA3	Theta of layer 3 (60°)	PCOMP	1	60.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x12	0	THETA4	Theta of layer 4 (-60°)	PCOMP	1	-60.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x13	0	THETA5	Theta of layer 5 (60°)	PCOMP	1	60.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x14	٥	THETA6	Theta of layer 6 (-60°)	PCOMP	1	-60.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x15	0	THETA7	Theta of layer 7 (85°)	PCOMP	1	85.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
	×	x16	0	THETA8	Theta of layer 8 (-85°)	PCOMP	1	-85.	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,

Questions? Email: christian@ the-engineering-lab.com

X Delete Visible Rows

Create Design Variables

- 1. Scroll to section Step 4 Adjust design variables
- 2. Click +Create Variable 3 times to create 3 design variables y1, y2 and y3
- 3. Set the following for y1
 - Initial Value: .01
 - Lower Bound: .001
 - Upper Bound: 10.
- 4. Set the following for y2
 - Initial Value: 85.
 - Lower Bound: -90.
 - Upper Bound: 90.
 - Allowed Discrete Values: -90., THRU, 90., BY, 5.0
- 5. Set the following for y3
 - Initial Value: 60.
 - Lower Bound: -90.
 - Upper Bound: 90.
 - Allowed Discrete Values: -90., THRU, 90., BY, 5.0
- The angle variables are to take on integer values, so discrete values of -90, -85, 80, ..., 0, 5, 10, ..., 80, 85, 90 are specified.

Step 4 - Adjust design variables 1

+ Op	Options 2									
	Label 👙	Status 🌲	Initial Value	Lower Bound	Upper Bound	Allowed Discrete Values				
	Search	Search								
×	y1	⊘3	.01	.001	10.	Examples: -2.0, 1.0, THRU, 10.0, BY, 1.0				
×	y2		85.	-90.	90.	-90., THRU, 90., BY, 5.0				
×	уЗ	6 5	60.	-90.	90.	-90., THRU, 90., BY, 5.0				

Create Design Variables

- 1. Click 5 times on +Create DLINK
- 2. Create design variables links for the thicknesses
 - 1. Dependent Design Variables: x1, x2, x3, x4, x5, x6, x7, x8
 - 2. Equation: y1 * 1.0
- Create design variables links for the -85 degree plies
 - Dependent Design Variables: x10, 16
 - 2. Equation: y2 * -1.0
- 4. Create design variables links for the 85 degree plies
 - Dependent Design Variables: x9, x15
 - 2. Equation: y2 * 1.0
- 5. Create design variables links for the -60 degree plies
 - 1. Dependent Design Variables: x12, x14
 - 2. Equation: y3 * -1.0
- 6. Create design variables links for the 60 degree plies
 - Dependent Design Variables: x11, x13
 - Equation: y3 * 1.0
- It is important to verify the Equation is configured properly. For example, the variable x10 is initially equal to -85 degrees. When the Equation is configured, it should also produce an initial value of -85. The resulting value of the Equation is displayed on the column titled Value of Equation and can be used to validate the Equation is configured properly.

Step 3 - Create variable links

+ Options

	Status ≑	Dependent Design Variables ≑	Equation (Independent Design Variables) \product	Value of Equation \updownarrow
	Search	Search	Search	Search
×	0	x1, x2, x3, x4, x5, x6, x7, x8 2.1	y1*1.0 2.2	0.01
×	0	x10, x16 3.1	y2 * -1.0 3.2	-85.
×	0	x9, x15 4.1	y2 * 1.0 (4.2)	85.
×	0	x12, x14 5.1	y3 * -1.0 5.2	-60.
×	0	x11, x13 6.1	y3 * 1.0 6.2	60.

JLINK Entries	 	
	NIZ	Latriac
		LIILIES

DLINK entries are used to create linear relationships between variables.

The SOL 200 Web App allows multiple variations of inputting the linear relationships.

Ultimately, the relationships result in one specific format. To the right are the equivalent linear relationships for the image shown above.

The right of the expression can also have additional variables. For example, $x^2 = 1.5 + x^1 + 1.0 + y^2 + 3.5 + ...$

x1 = 0.0 + y1 * 1.0 x2 = 0.0 + y1 * 1.0... x8 = 0.0 + y1 * 1.0 x9 = 0.0 + y2 * 1.0 x10 = 0.0 + y2 * -1.0x16 = 0.0 + y2 * -1.0

x15 = 0.0 + y2 * 1.0 x11 = 0.0 + y3 * 1.0 x12 = 0.0 + y3 * -1.0

 $x_{12} = 0.0 + y_3 = 1.0$ $x_{13} = 0.0 + y_3 = 1.0$ $x_{14} = 0.0 + y_3 = -1.0$

Create Design Objective

- 1. Click Objective
- 2. Select the plus (+) icon for weight
- 3. The objective has been set to minimize the weight, no further modification is necessary
- The objective must always be a single and global response. A response such as weight and volume are single responses, are independent of load case, and can be used as an objective. Other responses require special care when set as an objective. For example, if the objective is stress, only the stress of a single component, e.g. von Mises, of a single element, of a single load case may be used.

Objective	Equation Objective				
Step 1 -	Select an objecti	ve			

Select a response

	Response Description 💠	Response Type 💠
	Search	Search
2 🗗	Weight	WEIGHT
+	Volume	VOLUME
+	Eigenvalue	EIGN
+	Frequency	FREQ
+	Displacement	DISP

Step 2 - Adjust objective

+ Options

	Label	Status	Response Type	Maximize or Minimize	Property Type	ATTA		ATTB	АТТі
×	rO	0	WEIGHT	MIN 🗸	3	3	~	3 🗸	

Create Design Constraints

- Click Constraints
- 2. In the search box, type 'fa'
- Select the plus(+) icon 8 times for Composite Failure Criterion to create 8 constraints
- Click 10 on the pagination bar
- Configure the constraints as shown to the right
- Example: Configure the following for r1
 - Property Type: ELEM
 - ATTA: 5 FP (failure index)
 - (lamina 1) ATTB: 1
 - ATTi: 1
- (element 1)
- Upper Allowed Limit: .9
- Repeat the same for r2, r3, ... r8, but note that ATTB will be different for each row
- This example requires 8 constraints to be created. If there is a need to create hundreds of constraints, the web app includes a CSV export/import capability and is available by clicking + Options With the use of CSV and Excel, constraints can be quickly generated.
- In prior versions of this tutorial, the Lower Allowed Limit was set to .001. The failure index can actually be lower, e.g. .0002, and is still valid, but with the lower bound set to .001, the optimizer would see .0002 as a violated constraint. In this version of the tutorial, the lower allowed limit is left blank to avoid this

SOL 200 Web	Upload	Variables	Objective	Constraints	Subcases	Exporter	Results		
Constraints	Equation Constraints								

Step 1 - Select constraints

Select an analysis type	
-------------------------	--

SOL 101 - Statics		

Select a response

		Response Description ≑	Response Type ≑
		Search	fa 2
	+	Fatigue, pseudo-static fatigue analysis	FATIGUE
3) 🔁	Composite Failure Criterion	CFAILURE

Step 2 - Adjust constraints

+ Options

	Label	Status ≑	Response Type [≑]	Property Type $\hat{\varphi}$	ATTA 💠	ATTB ≑	ATTi 🗢	Lower Allowed Limit	Upper Allowed Limit
	Sŧ	Sear	Search	Search	Search	Search	Search	Search	Search
×	r1	0	CFAILURE	ELEM V	5 - Failure Index(FP) for direct stre: 🗸	1	1	Lower	.9
×	r2	0	CFAILURE	ELEM V	5 - Failure Index(FP) for direct stre: 🗸	2	1	Lower	.9
×	r3	0	CFAILURE	ELEM V	5 - Failure Index(FP) for direct stre: 🗸	3	1	Lower	.9
×	r4	0	CFAILURE	ELEM V	5 - Failure Index(FP) for direct stre: 🗸	4	1	Lower	.9
×	r5	0	CFAILURE	ELEM ~	5 - Failure Index(FP) for direct stre: 🗸	5 5	1	Lower	.9
×	r6	0	CFAILURE	ELEM V	5 - Failure Index(FP) for direct stre: V	6	1	Lower	.9
×	r7	0	CFAILURE	ELEM V	5 - Failure Index(FP) for direct stre: 🗸	7	1	Lower	.9
×	r8	0	CFAILURE	ELEM V	5 - Failure Index(FP) for direct stre: 🗸	8	1	Lower	.9

40 50

5 10 20

4

30

 \sim

Configure Settings

- 1. Click Settings
- 2. Scroll to section Result Files
- 3. Select one of the following H5 output options
 - Create the H5 file with MDLPRM
 - Create the H5 file with HDF5OUT

- The H5 file is used by the Postprocessor web app to display MSC Nastran results.
- The H5 file is used by the HDF5
 Explorer to create graphs (XY Plots) of MSC Nastran results.

SOL 200 Web App - Optimiz	1 zation Upload Variables Objective Constraints Subcases Exporter Results Settings Match Other User's	Guide Home
		< >
H5 Output Option		
Create the H5 file with HDF5OUT (su	ipported in MSC Nastran 2022.2 or newer) 🗸	\$
Create the H5 file with MDLPRM (supp Create the H5 file with HDF5OUT (sup	orted in MSC Nastran 2016.1 or newer) ported in MSC Nastran 2022.2 or newer)	\$ \$\$
		\$ DOPTPRM DESMA
	Deput Files	< Parameter t
	Result Files	HDF5OUT INPUT
	H5 Output Option	
	Create the H5 file with HDF5OUT (supported in MSC Nastran 2022.2 or newer) v	
	Select an Option	
(3)	Create the H5 file with MDLPRM (supported in MSC Nastran 2016.1 or newer)	
\smile	Create the H5 file with HDF500T (supported in MSC Nastran 2022.2 of newer)	

Export New BDF Files

1. Click on Exporter

2. Click on Download BDF Files

When the download button is clicked a new file named "nastran working directory" is downloaded. If the file already exists in your local folder, the folder name is appended with a number, e.g. "nastran_working_directory (1).zip"

SOL 200 Web App - Optimization Upload Variables Objective Constraints Subcases

BDF Output - Model

Exporter Results

1

Settings Match Other User's Guide Home

* *

*

< >

BDF Output - Design Model

assign	userfile = 'optimization results.csv', status = unknown,
form =	formatted, unit = 52
\$ NAST	RAN input file created by the Patran 2013.0.2 input file
\$ tran	slator on February 08, 2017 at 15:12:27.
\$ Dire	ct Text Input for Nastran System Cell Section
\$ Dire	ct Text Input for File Management Section
\$ Dire	ct Text Input for Executive Control
\$ Line	ar Static Analysis, Database
SOL 20	0
CEND	
\$ Dire	ct Text Input for Global Case Control Data
TITLE	= MSC.Nastran job created on 08-Feb-17 at 14:20:39
ECHO =	NONE
DES	OBJ(MIN) = 8000000
\$ D	ESGLB Slot
\$ D	SAPRT(FORMATTED, EXPORT, END=SENS) = ALL
SUBCAS	ε 1
ANA	LYSIS = STATICS
DES	SUB = 40000001
\$ D	RSPAN Slot
SUB	TITLE=Default
SPC	= 2
LOA	D = 2
DIS	PLACEMENT(SORT1,REAL)=ALL
SPC	FORCES(SORT1,REAL)=ALL
STR	ESS(SORT1,REAL,VONMISES,CENTER)=ALL
\$ Dire	ct Text Input for this Subcase
BEGIN	BULK

Download BDF Files

				Design works)	
5°				Design Model	
3.					
2000000					
2				and an invitable a success	
2			D	Jesign Variabies - Type i	
»					
2 -					
2					
2					
DVPREL 1	1000001	PCOMP	1	T1	
	100001	1.0	-	-	
DVPREL1	1000002	PCOMP	1	T2	
	100002	1.0			
DVPREL1	1000003	PCOMP	1	73	
	100003	1.0			
DVPREL1	1000004	PCOMP	1	Τ4	
	100004	1.0			
DVPREL1	1000005	PCOMP	1	T5	
	100005	1.0			
DVPREL1	1000006	PCOMP	1	Т6	
	100006	1.0			
DVPREL1	1000007	PCOMP	1	17	
	100007	1.0			
DVPREL1	1000008	PCOMP	1	Т8	
	100008	1.0			
DVPREL1	1000009	PCOMP	1	THETA1	
	100009	1.0			
DVPREL1	1000010	PCOMP	1	THETA2	
	100010	1.0			
DVPREL1	1000011	PCOMP	1	THETA3	
	100011	1.0			
DVPREL1	1000012	PCOMP	1	THETA4	
	100012	1.0			
DVPREL1	1000013	PCOMP	1	THETAS	
	100013	1.0			
DVPREL1	1000014	PCOMP	1	THETAG	
	100014	1.0			
DVPREL1	1000015	PCOMP	1	THETA7	
	100015	1.0			
DVPREL1	1000016	PCOMP	1	THETAS	
	100016	1.0			

Developed by The Engineering Lab

Perform the Optimization with Nastran SOL 200

- 1. A new .zip file has been downloaded
- 2. Right click on the file
- 3. Click Extract All
- 4. Click Extract on the following window
- Always extract the contents of the ZIP file to a new, empty folder.

	ross ► Downloads ►	•	◆ Search Down	loads	م					
ganize 🔻 🛛 🔭 🏹 Oj	pen 🔻 Share with 🔻	New folder	8=	•	0					
Favorites	Name	8D	Date modifi	ed T	уре					
Desktop	🔒 nastran_working	_directory.zip	0 /25 /2019 0	46 014 0	omoress					
Downloads			Open in new wind	ow						
OneDrive		\bigcirc	Futract All							
			Edit with Notepad	++						
Libraries			Open with							
Documents			Share with		-					
J Music			Restore previous v	ersions						
Videos			Send to							
Homegroup			Cut							
			сору							
Computer			Create shortcut							
Network			Rename							
	•	III								
			Properties							
nastran_wo	orking_directory.zip Date n	nodified: 2/25/2								
nastran_wo Compressed	orking_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes) 🚹 Extr	act Com	pressed (Zipped	l) Folders			
Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		🔵 🚹 Extr	act Com	oressed (Zipped	l) Folders			
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select	act Com	pressed (Zipped	I) Folders Extract File:	s		
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select	act Comp : a Dest I be extra	pressed (Zipped ination and cted to this fold	I) Folders Extract File: der:	s		
nastran_wo Compressed	r king_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil	act Comp : a Dest Il be extra rs\specia	oressed (Zipped ination and cted to this fold I-sunshine\Dow	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil	act Comp a Dest I be extra rs\specia	oressed (Zipped ination and cted to this fold I-sunshine\Dow	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will C:\Use	act Comp : a Dest I be extra Issecia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when coo	I) Folders Extract File: Jer: wnloads\nastra mplete	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest l be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when col	I) Folders Extract File: Ier: vnloads\nastra mplete	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil C:\Use	act Comp a Dest l be extra rs\specia v extracte	ination and ination this fold -sunshine\Dow d files when cou	I) Folders Extract File: der: vnloads\nastrat	S n_working_di	rectory	 Browse
nastran_wo Compressed	rking_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest I be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastra mplete	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest I be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold -sunshine\Dow d files when co	I) Folders Extract File: Jer: vnloads\nastrat	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil C:\Use	act Comp a Dest l be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n l (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp : a Dest I be extra rs\specia v extracte	ination and cted to this fold -sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n l (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp : a Dest I be extra Is specia v extracte	oressed (Zipped ination and cted to this fold -sunshine\Dow d files when co	I) Folders Extract File: Jer: vnloads\nastra mplete	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest l be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse

Perform the Optimization with Nastran SOL 200

- 1. Inside of the new folder, double click on Start MSC Nastran
- 2. Click Open, Run or Allow Access on any subsequent windows
- 3. MSC Nastran will now start
- After a successful optimization, the results will be automatically displayed as long as the following files are present: BDF, F06 and LOG.
- One can run the Nastran job on a remote machine as follows:

 Copy the BDF files and the INCLUDE files to a remote machine.
 Run the MSC Nastran job on the remote machine.
 After completion, copy the BDF, F06, LOG, H5 files to the local machine.
 Click "Start MSC Nastran" to display the results.

Using Linux?

Follow these instructions:
1) Open Terminal
2) Navigate to the nastran_working_directory cd ./nastran_working_directory
3) Use this command to start the process ./Start_MSC_Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x ./nastran_working_directory

🔾 🗸 🖳 🗸 Downl 🕨 nastran_working_directory 🕨 🗸 😽	Search nastran_worki	ing_dir 🔎
Organize 🔻 Include in library 👻 Share with 👻 New folder	:== ▼	
Favorites A Name	Date modified	Туре
Desktop	2/24/2018 1:57 PM	File folder
Downloads	2/24/2018 1:57 PM	BDF File
🖳 Recent Places 🛛 🕅 model.bdf	2/24/2018 1:57 PM	BDF File
ConeDrive	2/24/2018 1:57 PM	Shortcut
 □ Libraries □ Documents □ Music □ Pictures □ Videos 		
₩ Computer		

SOL 200 Web App - Status

Status

Republic Python MSC Nastran

Status

1. While MSC Nastran is running, a status page will show the current state of MSC Nastran

Name	Status of Job	Design Cycle	RUN TERMINATED DUE TO
model.bdf	Running	None	

 The status of the MSC Nastran job is reported on the Status page. Note that Windows 7 users will experience a delay in the status updates. All other users of Windows 10 and Red Hat Linux will see immediate status updates.

SOL 200 Web App - Local Optimization Results

Review Optimization Results

After MSC Nastran is finished, the results will be automatically uploaded.

- Ensure the messages shown have green checkmarks. This is indication of success. Any red icons indicate challenges.
- 2. The final value of objective, normalized constraints (not shown) and design variables can be reviewed.
- Both the thicknesses and orientation angles have changed during the optimization. The plot can be manipulated to view specific variables.
- On some occasions, the orientation angles may not change during the optimization. See the Appendix for additional details.

Results

Objective: Minimize the weight of this cylinder composed of a composite laminate

Before Optimization

- \circ Weight: 1.60 lb_f·s²/in
- Layup: [85/-85/60/-60/60/-60/85/-85]
- Thickness: .0100 in
- Plies are initially in failure

After Optimization

- Weight: 1.04 $lb_f \cdot s^2/in$
- Layup: [90/-90/0/0/0/0/90/-90]
- Thickness: .0065 in

- 1. The original input files, e.g. DAT, BDF, etc., contains the original values for the designed properties. These original values must be updated to use the new and optimized values.
- A new BDF file has been created in nastran_working_directory/workspace_b/ model_final.bdf.
- 3. The file model_final.bdf is a copy of the original input files but the original values for the designed properties have been updated to use the optimized values.
- If you were using multiple INCLUDE files, model_final.bdf is a combination of all INCLUDE files. The next few slides discuss an alternative method of using the PCH to BDF web app to update the values for the designed properties while preserving separate INCLUDE files.

😋 🗢 🗣 🚺 « nastr	an_working_directory 🕨 workspace_b 👻 🍕	Search workspace 🔎
Organize 👻 Inclu	de in library 🔻 Share with 💌 New folder	:= • 🔟 🔞
☆ Favorites	Name	Date modified Ty
Nesktop	model_final.bdf	7/20/2022 2:32 PM No
Downloads		
Recent Places		
肩 Libraries	▼ (+

Original Input Files

PCOMP	1			13000	HTLL			(1)
COM	1		0.5	15000.			0.5	
	1	.01	85.	YES	1	.01	-85.	YES
	1	.01	60.	YES	1	.01	-60.	YES
	1	.01	60.	YES	1	.01	-60.	YES
	1	.01	85.	YES	1	.01	-85.	YES
\$ Pset:	"comp	osite_tu	be" will	be import	ed as:	"pcomp.1"		
CQUAD4	1	1	1	2	19	18		

Updated BDF File (model_final.bdf)

\$ Compos	site Mate	rial Des	cription					\bigcirc
PCOMP	1		0.0	13000.	HILL	0.0	0.0	(3)
	1	.00652	90.	YES	1	.00652	-90.	YES
	1	.00652	0.0	YES	1	.00652	0.0	YES
	1	.00652	0.0	YES	1	.00652	0.0	YES
	1	.00652	90.	YES	1	.00652	-90.	YES
\$ Pset:	"composi	te_tube"	will be	imported	as: "po	comp.1"		
CQUAD4	1	1	1	2 1	9	18		

- 1. Click Results
- 2. Click PCH to BDF

Select a Results App

Local Optimization (.f06)

Parameter Study (.f06)

Annual Long. Long.

Responses (.f06)

Road, Barbarbar, Browther Road, Sciences, Internation

TORE A LOCAL STREET

Global Optimization Type 2 (.f06)

Sensitivities (.csv)

Topology Viewer (.des)

Miscellaneous Apps

GENOR * (P1(1) * DAUS)**2*5:	ME 0 11.00 10 12 01	4 4 1 1 H
DECETARE # 140 + MON / DEVEN	90 1 11.0 m 11 m	
	200 v 11.00 vo 11 vo	 M F F F H
	MM 4 11.00	
NEBUTS LTREES	ME - 1.00 - 1.0 - 10	
((31,71) = 7.60 * 70.00**2 * (1) DENEMA (5.5418 * (1)**2*1.00*) BUCKLING #	MR 2 11.00 00 11 00	 • • • • • • •
-1.35 * g / BRAR	100 0 11.00 10 10 m	
	HE I I HE HE H H	
Converter	P	CH to BDF

The original .bdf/.dat file has old information about the properties. The properties will be updated.

- 1. Select the model.pch file
- 2. Select the original file: d200c01.bdf
- 3. A summary of updates that will be performed are shown
- Click Download and a new updated BDF file is downloaded

	les n	nodel.pc	h (1)					
				Inspecting: 1	00%				
List of Sel	ected Fi	les							
CHEr	itries								
PCOMP	1		0.0	13000.	HILL	0.0	0.0		
	1	.00652	90.	YES	1	.00652	-90.	YES	
	1	.00652	0.0	YES	1	.00652	0.0	YES	
		.00652	0.0	YES	1	.00652	0.0	YES	
	1		90	YES	1	.00652	-90.	YES	
	1	.00652	50.						

SOL 200 Web App - PCH to BDF

Step 2 - Select BDF Files
Select files d200c01.bdf
Inspecting: 100%
List of Selected Files
BDF Entries

PCOMP	1			13000.	HILL			
	1	.01	85.	YES	1	.01	-85.	YES
	1	.01	60.	YES	1	.01	-60.	YES
	1	.01	60.	YES	1	.01	-60.	YES
	1	.01	85.	YES	1	.01	-85.	YES

lew BDF Files

On download, the PCH entries will replace older BDF entries.

Home

1. Note the entries have been updated with the optimized properties

d200c01.	bdf 🔣 🔤										🗎 d20	d200c01 (1).bdf ⊠
1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 22 22 22	<pre>\$ HASTEJ \$ transl \$ Direct \$ Direct \$ Direct \$ Lineas SOL 101 CEND \$ Direct \$ Direct SUBCASE SUBCASE SUBCASE SUBCASE SUBCASE \$ SUBCASE \$ Constant \$ Direct \$ Dir</pre>	AN input lator of to Text to Text to Text to Text to Text to Text NONE 1 1 TILE=De = 2 = 2 LACEMEN DORCES(S) SS(SORT to Text SULK POST PRTMAD nts and	It file on Febru Input f Input f Input f Input f ic Analy Input f astran j efault vr(SORT1 SORT1,RE IT,REAL, Input f Input f Input f SORT1 f SORT1 SOR	<pre>created ary 08, or Nastr or File : or Execu sis, Dat or Globa ob creat ,REAL)=A AL)=ALL VONMISES or this or Bulk t Proper</pre>	by the Pa 2017 at an System Managemen tive Cont abase 1 Case Co ed on 08- LL ,CENTER)= Subcase Data ties for	tran 20 15:12:2 Cell S t Secti rol ntrol D Feb-17 ALL	13.0.2 i 7. ection on ata at 14:20	:39	2		1 2 3 3 4 5 6 6 7 7 8 9 9 10 111 12 13 13 14 15 16 6 17 7 18 19 20 21 22 23 24 4	<pre>1 \$ NASTRAN input file created by the Patran 2013.0.2 input file 2 \$ translator on Pebruary 08, 2017 at 15:12:27. 3 Direct Text Input for Nastran System Cell Section 4 \$ Direct Text Input for File Management Section 5 \$ Direct Text Input for File Management Section 6 \$ Linear Static Analysis, Database 7 SOL 101 8 CEND 9 \$ Direct Text Input for Global Case Control Data 9 TITLE = MSC.Nastran job created on 08-Feb-17 at 14:20:39 1 ECHO = NONE 8 SUBCASE 1 3 SUBTITLE=Default 4 SPC = 2 4 LOAD = 2 4 DISPLACEMENT(SORT1,REAL)=ALL 5 SUBCST1,REAL)=ALL 5 DIrect Text Input for this Subcase 8 BEGIN BULK 9 Direct Text Input for Bulk Data 2 PARAM PRTMAXIM YES 4 \$ Linear the properties for region ; Cylinder </pre>
25 26 27 28 29 30 31 32	S Compos \$ Compos PCOMP \$ Deet:	site Pu site Ma 1 1 1 1 1 1	.01 .01 .01 .01 .01 .01	Reference Descript 85. 60. 60. 85.	e Materia ion : 13000. YES YES YES YES	HILL HILL 1 1 1 1	.01 .01 .01 .01 .01	-85. -60. -60. -85.	YES YES YES YES YES		25 26 27 28 29 30 31 31	S Composite Property Reference Material: Composite Lawup of Cylinder 6 \$ Composite Material Description : 7 PCOMP 1 0.0 13000. 9 1 .00652 90. YES 1.00652 -90. 9 1 .00652 0.0 YES 1.00652 0.0 YES 1 .00652 0.0 YES 1.00652 0.0 YES 1 .00652 0.0 YES 1.00652 0.0 YES 1 .00652 90. YES 1.00652 0.0 YES 1 .00652 90. YES 1.00652 -90. YES
33 (34 (35 (36 (37 (38 (40 (41 (44 (CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4 CQUAD4	1 2 3 4 5 6 7 8 9 10 11 12	1 1 1 1 1 1 1 1 1 1	1 2 3 4 5 6 7 8 9 10 11 12	2 3 4 5 6 7 8 9 10 11 12 13	19 20 21 22 23 24 25 26 27 28 29 30	18 19 20 21 22 23 24 25 26 27 28 29			1	33 34 35 36 37 38 39 40 41 42 43 44	3 CQUAD4 1 1 1 2 19 18 4 CQUAD4 2 1 2 3 20 19 5 CQUAD4 3 1 3 4 21 20 6 CQUAD4 4 1 4 5 22 21 7 CQUAD4 5 1 5 6 23 22 8 CQUAD4 6 1 6 7 24 23 9 CQUAD4 7 1 7 8 25 24 0 CQUAD4 8 1 8 9 26 25 11 CQUAD4 9 1 9 10 27 26 12 CQUAD4 11 10 11 28 27 13 CQUAD4 11 1 11 12 29 28 14 CQUAD4 12 1 12 13 30 29

Original BDF/DAT File

Downloaded BDF/DAT File

Inspection of MSC Nastran Results with the Post-processor Web App

Normalized Constraints

- All constraints are normalized. For each design cycle, the maximum normalized constraint (NC) is reported in the Normalized Constraints plot.
- The Responses web app is used to inspect the corresponding response for each maximum normalized constraint value.
 - For the initial design, the maximum NC is 23.135 and corresponds to a failure index of 21.721.
 - For the final design, the maximum NC is -.00018746 and corresponds to a failure index of 89.983.

Fringe Plot: Max Failure Index

Web App

index is 21.7213.

index is .8998.

results.

layers.

Main Panel -Post-processor < > Main Panel -Post-processor < > Spectrum Spectrum 21.72138 0.89985 21.72024 0.89985 21.71910 0.89985 21.71796 0.89984 Post-processor 21.71681 0.89984 21.71567 0.89984 21.721347354163687 21.71453 Element ID 4, Layer 8 0.8998485020162275 0.89984 21.71339 Element ID 5, Layer 8 0.89984 21.71224 0.89984 21.71110 0.89984 21.70996 0.89983 21.70882 0.89983 The Post-processor web app is used to inspect the maximum failure index for all For the initial design, the maximum failure For the final design, the maximum failure Refer to the Post-processor web app SOL 200 Web App SOL 200 Web App Developed by The Engineering Lab Developed by The Engineering Lab tutorials to learn more about MSC Nastran **Initial Design Final Design**

Questions? Email: christian@ the-engineering-lab.com

HEXAGON

Technology Partner

Post-processor Web App

The layer thicknesses of the initial and final design are compared.

Thickness of PCOMP Layers

End of Tutorial

Appendix

Appendix Contents

- Frequently Asked Questions
 - What are the ways of specifying allowable discrete values for design variables?
 - Why do the orientation angles not change?

Frequently Asked Questions

Question:

• What are the ways of specifying allowable discrete values for design variables?

Answer:

- There are two methods
- Suppose you want to specify allowable values: 1.0, 2.0, 3.0, 10.0

Method 1

• Type in each value with commas separating each value

Method 2

Use the THRU and BY method

For some optimizations, the orientation angles remain unchanged.

HEXAGON

Technology Partner

The orientation angles will only change when an angle dependent constraint is violated.

In this example, the normalized constraint at each design cycle is negative, indicating satisfied constraints. There are no violated constraints, i.e. positive normalized constraints, therefore, there is no change in orientation angles.

Thickness influences both weight and angle dependent responses.

Orientation angles only influence angle dependent responses.

The optimizer cares most about the objective. The optimizer only takes action against the constraints when the constraints are violated. This is why you see the thickness change often, but sometimes see the orientation angles unchanged.

The reader may be tempted to state, "Intuition suggests the orientation should still change regardless."

In this example, the thickness variable starts at 1.0 and eventually ends at its lower bound of .01. Even when the thickness is at its thinnest, the normalized constraints remain negative. The moment when the normalized constraint is positive is never achieved, therefore the orientation angles are not changed.

If the normalized constraints are positive, i.e. violated constraints, the angles will change.

Normalized Constraints

A change in orientation angles can be forced by reducing the lower bound of the thickness design variables.

During the optimization, the design can be become very thin and cause constraints to become violated, which cause a change in orientation angles.

Before:

	Label \$	Status ≑	Property \$	Property Description \ddagger	Entry ≑	Entry ID [⊕]	Initial Value [‡]	Lower Bound	Upper Bound	Allowed Values
	Q	٩	Q	Thickness	Q	٩	Q	Q	Q	Q
×	x1	0	T1	Thickness of ply	PCOMP	1	1.0	.01	10.	Allowed discrete values, example: 1.5, 2.
×	x2	0	T2	Thickness of ply	PCOMP	1	1.0	.01	Upper	Allowed discrete values, example: 1.5, 2.
	x3	0	ТЗ	Thickness of ply	PCOMP	1	1.0	.01	Upper	Allowed discrete values, example: 1.5, 2.
Af	ter:							\square		
Af	ter:	Statua	Property +	Droporty Description +	Entry	Entry	Initial	Lower	Upper	Allowed Voluce
Af	ter:	Status ¢	Property ¢	Property Description \$	Entry ¢	Entry ID ÷	Initial Value 🗘	Lower Bound	Upper Bound	Allowed Values
Af	Label \Rightarrow	Status ¢	Property ¢	Property Description Thickness	Entry ¢	Entry ID ⁺	Initial Value [‡]	Lower Bound	Upper Bound	Allowed Values
Af ⁻	Label \$	Status 🗧 Q	Property ¢ Q T1	Property Description Thickness Thickness of ply	Entry ¢	Entry ID ÷	Initial Value Q 1.0	Lower Bound	Upper Bound Q 10.	Allowed Values Q Allowed discrete values, example: 1.5, 2.
Af [•]	ter: Label \$ Q x1 x2	Status ¢	Property ¢ Q T1 T2	Property Description Thickness Thickness of ply Thickness of ply	Entry ¢ Q PCOMP PCOMP	Entry ID + Q 1 1	Initial Value $\stackrel{\diamond}{\Rightarrow}$ 1.0 1.0	Lower Bound .0001 .0001	Upper Bound Q 10. Upper	Allowed Values Q Allowed discrete values, example: 1.5, 2. Allowed discrete values, example: 1.5, 2.

After reducing the lower bound on the thickness variables, the normalized constraint become positive, indicating a violated constraint, during design cycle 6. Note that the orientation angles also change in the same design cycle.

The reader may notice that after design cycle 7 and 8, the constraints are violated, but the orientation angles are now unchanging. At this point, the thickness is the variable being dominantly changed but is not shown in the variable plot.

To conclude, the orientation angles will change if an angle dependent constraint is violated.

