Workshop - Vibration of a Cantilevered Beam (Turner's Problem)

AN MSC NASTRAN SOL 200 TUTORIAL

Goal: Use Nastran SOL 200 Optimization

Minimize the weight of this structure while constraining the 1st natural frequency

Before Optimization

- Weight: 19.2 lbs.
- 1st Natural Frequency: 26 Hz

After Optimization

- Weight: 6.97 lbs.
- 1st Natural Frequency: 20 Hz

MSC Nastran Design Sensitivity and Optimization User's Guide Chapter 8 - Example Problems - Vibration of a Cantilevered Beam (Turner's Problem)

Details of the structural model

Vibration of a Cantilevered Beam (Turner's Problem)

This problem was originally published by M.J. Turner (see Reference 13.). The problem is to design a minimum weight structure while constraining the fundamental natural frequency to be at or above 20 Hz. The beam is symmetric about Z = 0 and made up of a shear web having top and bottom caps that are modeled with rod elements. Turner's original design model consisted of piecewise linear bar cross-sectional areas and web thicknesses; however, we will just approximate this as a step function model with uniform cross-sectional rod elements and uniform thickness shear elements within each of three bays.

Figure 8-17 Cantilever Beam Vibration Model

MSC Nastran Design Sensitivity and Optimization User's Guide Chapter 8 - Example Problems - Three Bar Truss

Optimization Problem Statement

More Information Available in the Appendix

The Appendix includes information regarding the following:

- Frequently Asked Questions
 - There are thousands of properties that have been identified as designable. How can the properties best be sorted so the thicknesses can be set as design variables?
 Frequently Asked Fre

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

Tutorial

Tutorial Overview

- 1. Start with a .bdf or .dat file
- 2. Use the SOL 200 Web App to:
 - Convert the .bdf file to SOL 200
 - Design Variables
 - Design Objective
 - Design Constraints
 - Perform optimization with Nastran SOL 200
- 3. Plot the Optimization Results
- 4. Update the original model with optimized parameters

Special Topics Covered

Equation Driven Objective - MSC Nastran includes a list of quantities that can be set as objectives or constraints. In addition, custom user defined equations may be specified and be set as objectives or constraints. This tutorial details the process in defining custom equations.

Equation Objective

Minimize f = a1 - 90.0

SOL 200 Web App Capabilities

Compatibility

- Google Chrome, Mozilla Firefox or Microsoft Edge
- Windows and Red Hat Linux

• Installable on a company laptop, workstation or server. All data remains within your company.

The Post-processor Web App and HDF5 Explorer are free to MSC Nastran users.

Benefits

entries.

- REAL TIME error detection. 200+
- error validations.
- REALT TIME creation of bulk data •
- Web browser accessible
- Free Post-processor web apps
 - +80 tutorials

Web Apps

Web Apps for MSC Nastran SOL 200 Pre/post for MSC Nastran SOL 200. Support for size, topology, topometry, topography, multi-model optimization.

Shape Optimization Web App Use a web application to configure and perform shape optimization.

Machine Learning Web App Bayesian Optimization for nonlinear response optimization (SOL 400)

Remote Execution Web App Run MSC Nastran jobs on remote Linux or Windows systems available on the local network

PBMSECT Web App Generate PBMSECT and PBRSECT entries graphically

Dynamic Loads Web App Generate RLOAD1, RLOAD2 and DLOAD entries graphically

Ply Shape Optimization Web App Optimize composite ply drop-off locations, and generate new PCOMPG entries

Stacking Sequence Web App Optimize the stacking sequence of composite laminate plies

HDF5 Explorer Web App Create graphs (XY plots) using data from the H5 file

Before Starting

 Ensure the Downloads directory is empty in order to prevent confusion with other files

- Throughout this workshop, you will be working with multiple file types and directories such as:
 - .bdf/.dat
 - nastran_working_directory
 - .f06, .log, .pch, .h5, etc.
- To minimize confusion with files and folders, it is encouraged to start with a clean directory.

The Engineering Lab

Go to the User's Guide

1. Click on the indicated link

• The necessary BDF files for this tutorial are available in the Tutorials section of the User's Guide.

Select a web app to begin Before After Optimization for SOL 200 Multi Model Optimization Machine Learning | Parameter HDF5 Explorer Viewer Study Tutorials and User's Guide (1)Full list of web apps

SOL 200 Web App

Obtain Starting Files

- 1. Find the indicated example
- 2. Click Link
- 3. The starting file has been downloaded

• When starting the procedure, all the necessary BDF files must be collected together.

Open the Correct Page

Click on the indicated link

- MSC Nastran can perform many optimization types. The SOL 200 Web App includes dedicated web apps for the following:
 - Optimization for SOL 200 (Size, Topology, Topometry, Topography, Local Optimization, Sensitivity Analysis and Global **Optimization**)
 - Multi Model Optimization
 - Machine Learning
- The web app also features the HDF5 Explorer, a web application to extract results from the H5 file type.

SOL 200 Web App

Select a web app to begin

Machine Learning | Parameter Study

Tutorials and User's Guide

Full list of web apps

HDF5 Explorer

Viewer

Upload BDF Files

- Click 1. Select Files and select dsoug2.dat
- 2. Click Upload Files

The process starts by uploading all the necessary BDF files. The BDF files can be files of your own or files found in the Tutorials section of the User's Guide.

Step 1 - Upload .BDF Files

Create Design Variables

- 1. In the search box, type 'a'
- 2. Click on the plus (+) icons to set the areas as design variables
- 3. Specify the lower bound as .01 for design variables x1, x2, and x3
- 4. Specify the upper bound as 100. for design variables x1, x2, and x3
- Each step has hidden functionality for advanced users. The visibility is controlled by clicking + Options.
- If the property entry, e.g. PSHELL, was given a name in Patran, e.g. Car Door, the name can be shown by marking the checkbox titled Entry Name.

Step 1 - Select design properties

+ Options

Create DVX	REL1 Property	Property Description \Leftrightarrow	Entry 🌲	Entry ID 🌲	Current Value \$
	a (1)	Search	Search	Search	Search
ſ Đ	A	Area of the rod	PROD	201	1.0
2 - 🛃	A	Area of the rod	PROD	202	1.0
•	A	Area of the rod	PROD	203	1.0

Step 2 - Adjust design variables

X Delete Visible Rows

+ Options

	Label 🌲	Status ≑	Property ≑	Property Description 🗢	Entry ≑	Entry ID 💠	Initial Value	Lower Bound	Upper Bound	Allowed Discrete Values
	Search	Search	Search	Search	Search	Search	Search	°(3)	(4)	Search
×	x1	0	A	Area of the rod	PROD	201	1.0	.01	100.	Examples: -2.0, 1.0, THRU, 10.0,
×	x2	0	A	Area of the rod	PROD	202	1.0	.01	100.	Examples: -2.0, 1.0, THRU, 10.0,
×	x3	0	A	Area of the rod	PROD	203	1.0	.01	100.	Examples: -2.0, 1.0, THRU, 10.0,

Create Design Variables

- 1. In the search box, type 't'
- 2. Click on the plus (+) icons to set the thicknesses as design variables
- B. Click 10 on the pagination bar
- 4. Specify the lower bound as .0002 for design variables x4, x5, and x6
- 5. Specify the upper bound as 2.0 for design variables x4, x5, and x6
- In some instances, the optimizer will vary a positive design variable and make it negative, e.g. a thickness of .08 becomes -.01 in a weight minimization optimization. Certain properties, such as thickness or beam cross sections should never be negative. The lower bound in this example is set to .002 to avoid a negative variable during the optimization.

Step 1 - Select design properties

+ Options

Cre	ate DVXREL1	Property 🌲	Property Description \Leftrightarrow	Entry 🖨	Entry ID ≑	Current Value 👙
		t (1)	Search	Search	Search	Search
	1	Т	Thickness	PSHELL	204	0.2
(2)	•	Т	Thickness	PSHELL	205	0.2
	+	Т	Thickness	PSHELL	206	0.2

Step 2 - Adjust design variables

X Delete Visible Rows

+ Options

	Label \$	Status \$	Property ≑	Property Description \ddagger	Entry 😄	Entry ID 💠	Initial Value	Lower Bound	Upper Bound	Allowed Discrete Values
	Search	Search	Search	Search	Search	Search	Search	Search	Search	Search
×	x1	0	A	Area of the rod	PROD	201	1.0	.01	100.	Examples: -2.0, 1.0, THRU, 10.0,
×	x2	٥	A	Area of the rod	PROD	202	1.0	.01	100.	Examples: -2.0, 1.0, THRU, 10.0,
×	x3	٥	A	Area of the rod	PROD	203	1.0		5.	Examples: -2.0, 1.0, THRU, 10.0,
×	×4	٥	Т	Thickness	PSHELL	204	0.2	.0002	2.	Examples: -2.0, 1.0, THRU, 10.0,
×	x5	0	Т	Thickness	PSHELL	205	0.2	.0002	2.	Examples: -2.0, 1.0, THRU, 10.0,
×	x6	0	Т	Thickness	PSHELL	206	0.2	.0002	2.	Examples: -2.0, 1.0, THRU, 10.0,

Questions? Email: christian@ the-engineering-lab.com

30

40

50

20

3

5 10

Create Design Objective

1. Click on Objective

2. Click on Equation Objective

- There are 2 methods of setting an objective.
 - Method 1 Select a objective from a given list of responses, e.g. Weight, Volume, etc.
 - Method 2 Create an equation.
- This example uses Method 2 for the objective.

SOL 200 Web App - Optimization Upload Variables	0bjective	Constraints	Subcases	Exporter	Results
Objective Equation Objective 2					
Step 1 - Select an objective					

Select an analysis type

SOL 101 - Statics

Select a response

	Response Description ≑	Response Type ≑
	Search	Search
•	Weight	WEIGHT
+	Volume	VOLUME
+	Displacement	DISP
+	Strain	STRAIN
+	Element Strain Energy	ESE

 \sim

Create Design Objective

- 1. Scroll to section: Step A Optional -Create additional responses
- 2. Click the plus (+) icon for Weight
- 3. A weight response a1 has been created
- 4. Scroll to section: Step 1 Adjust equation objective
- 5. Type in this equation:

a1 - 90.0

Caution: Do not copy and paste this equation into the web app, sometimes PowerPoint will change the negative symbol from '-' to '-' and will be carried over if you copy and paste. Manually type in the equation instead.

- Suppose an analysis model is 10000 units of mass. If the design variables only impact .001 units of mass, then the sensitivities computed will be too small and the optimizer will be unable to minimize the weight. To over come this, the objective is set to the weight of only the design regions (Total weight minus the weight of the non-design region OR r0 = a1 - 9999.999). With this new objective, the sensitivities are better conditioned, and the optimizer can minimize the weight.
- Alternatively, the following option augments the objective so the objective reports the change/difference in the objective instead of the original objective. For example, Before: 10000 changes to 10002 After: 0 changes to

```
2.
```

DOPTPRM OBJMOD 1

Label	Status	Maximize or Minimize	-	Equation			
R0	0	MIN 🗸	a1-90. 5				
						5 10 20 30)
Step A -	Optiona	I - Create	additional responses				
Select an ana	ilysis type						
SOL 103 - N	ormal Modes						
Select a resp	onse						
Select a resp	onse		Response Description ¢		Response	e Type ≑	
Select a resp	Search		Response Description \$	Search	Response	e Type ≑	
Select a resp	onse Search Weight		Response Description \$	Search WEIGHT	Respons	e Type ≑	
2 +	Search Weight Volume		Response Description \Rightarrow	Search WEIGHT VOLUME	Respons	ae Type ≑	
Select a resp	Search Weight Volume Eigenvalu	e	Response Description \$	Search WEIGHT VOLUME EIGN	Respons	e Type ≑	
Select a resp	Search Weight Volume Eigenvalu Frequenc	ie y	Response Description \$	Search WEIGHT VOLUME EIGN FREQ	Respons	e Type ¢	

+ Options

		Label ‡	Status ≑	Response Type [⊕]	Property Type	ATTA 🗢	ATTB ≑	ATTI ≑
		Sŧ	Sear	Search	Search	Search	Search	Search
3	×	a1	0	WEIGHT		3 ~	3 🗸	

Create Design Constraints

- 1. Click Constraints
- 2. Click the plus (+) icon for Frequency
- Configure the following for r1
 - ATTA: 1
 - Lower Allowed Limit: 20.0

(mode 1)

The constraint r1 is read as follows:
The natural frequency of mode 1 is to
be greater than 20Hz.

200 Web App - Op	timization	Upload	Variables	Objective	Constraints	Subcases	Exporter	Results	
Constraints Equation	Constraints				(1)				
Otom 1 Onla	-+ + -								
Step 1 - Sele	ct consti	raints							
Step 1 - Sele	ct consti	raints							
Step 1 - Sele	ct consti	raints							

Select a response

		Response Description ≑	Response Type 💠			
		Search	Search			
	•	Weight	WEIGHT			
	•	Volume	VOLUME			
	+	Eigenvalue	EIGN			
2		Frequency	FREQ			
	+	Displacement	DISP			

Step 2 - Adjust constraints

+ Options

	Label	Status ≑	Response Type	Property Type $\widehat{\Rightarrow}$	ATTA \$	ATTB ÷	ATTi ÷	Lower Allowed Limit	Upper Allowed Limit
	St	Sear	Search	Search	Search	Search 3	Search	Search	Search
×	r1	0	FREQ	STRUC 🗸	1			20.	Upper

Configure Settings

- 1. Click Settings
- 2. Scroll to section Result Files
- 3. Select one of the following H5 output options
 - Create the H5 file with MDLPRM
 - Create the H5 file with HDF5OUT

- The H5 file is used by the Postprocessor web app to display MSC Nastran results.
- The H5 file is used by the HDF5
 Explorer to create graphs (XY Plots) of MSC Nastran results.

SOL 200 Web App - Optimiz	1 zation Upload Variables Objective Constraints Subcases Exporter Results Settings Match Other User's	Guide Home
		< >
H5 Output Option		
Create the H5 file with HDF5OUT (su	ipported in MSC Nastran 2022.2 or newer) 🗸	\$
Create the H5 file with MDLPRM (supp Create the H5 file with HDF5OUT (sup	orted in MSC Nastran 2016.1 or newer) ported in MSC Nastran 2022.2 or newer)	\$ \$\$
		\$ DOPTPRM DESMA
	Deput Files	< Parameter t
	Result Files	HDF5OUT INPUT
	H5 Output Option	
	Create the H5 file with HDF5OUT (supported in MSC Nastran 2022.2 or newer) v	
	Select an Option	
(3)	Create the H5 file with MDLPRM (supported in MSC Nastran 2016.1 or newer)	
\smile	Create the H5 file with HDF500T (supported in MSC Nastran 2022.2 of newer)	

Export New BDF Files

1. Click on Exporter

2. Click on Download BDF Files

 When the download button is clicked a new file named "nastran_working_directory" is downloaded. If the file already exists in your local folder, the folder name is appended with a number, e.g. "nastran_working_directory (1).zip"

SOL 200 Web App - Optimization	Upload	Variables	Objective	Constraints	Subcases	Exporter	Results	

assign userfile = "optimization_results.csv",	status = unknown,
form = formatted, unit = 52	
ID MSC DSOUG2 \$ v2004 ehj 25-Jun-2003	
TIME 10	
SOL 200	
CEND	
TITLE = VIBRATION OF A BEAM.	DSOUG2
SUBTITLE = TURNER'S PROBLEM	
ECHO = NONE	
DESOBJ(MIN) = 9000000	
\$ DESGLB Slot	
<pre>\$ DSAPRT(FORMATTED, EXPORT, END=SENS) = ALL</pre>	
SUBCASE 1	
ANALYSIS = MODES	
DESSUB = 40000001	
\$ DRSPAN Slot	
VECTOR(SORT1,PLOT,REAL)=ALL	
SPCFORCES(SORT1, PLOT, REAL)=ALL	
METHOD = 1	
\$	
BEGIN BULK	

Download BDF Files

< >

BDF Output - Design Model

*						
\$*						*
\$*				Desi	ign Model	8
\$*						*
5******	*******	*******	******	*******		*
\$						
\$			D	esign Va	ariables - Type 1	
\$						-
\$						
\$						
\$						
DVPREL1	1000001	PROD	201	A		
	100001	1.0				
DVPREL1	1000002	PROD	202	A		
	100002	1.0				
DVPREL1	1000003	PROD	203	A		
	100003	1.0				
DVPREL1	1000004	PSHELL	204	т		
	100004	1.0				
DVPREL1	1000005	PSHELL	205	т		
	100005	1.0				
DVPREL1	1000006	PSHELL	206	т		
	100006	1.0				
\$						
\$						
DESVAR	100001	X1	1.0	.01	100.	
DESVAR	100002	x2	1.0	.01	100.	
DESVAR	100003	xЗ	1.0	.01	100.	
DESVAR	100004	х4	0.2	.0002	2.	
DESVAR	100005	x5	0.2	.0002	2.	
DESVAR	100006	х6	0.2	.0002	2.	
\$						
\$						
s						
\$						
\$			D	esign Va	ariables - Type 2	
\$						-
\$						
\$						

Developed by The Engineering Lab

Perform the Optimization with Nastran SOL 200

- 1. A new .zip file has been downloaded
- 2. Right click on the file
- 3. Click Extract All
- 4. Click Extract on the following window
- Always extract the contents of the ZIP file to a new, empty folder.

	ross ► Downloads ►	•	◆ Search Down	loads	م					
ganize 🔻 🛛 🔭 🏹 Oj	pen 🔻 Share with 🔻	New folder	8=	•	0					
Favorites	Name	8D	Date modifi	ed T	уре					
Desktop	🔒 nastran_working	_directory.zip	0 /25 /2019 0	46 014 0	omoress					
Downloads			Open in new wind	ow						
OneDrive		\bigcirc	Futract All							
			Edit with Notepad	++						
Libraries			Open with							
Documents			Share with		-					
J Music			Restore previous v	ersions						
Videos			Send to							
Homegroup			Cut							
			сору							
Computer			Create shortcut							
Network			Rename							
	•	III			F					
			Properties							
nastran_wo	orking_directory.zip Date n	nodified: 2/25/2								
nastran_wo Compressed	orking_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes) 🚹 Extr	act Com	pressed (Zipped	l) Folders			
Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		🔵 🚹 Extr	act Com	oressed (Zipped	l) Folders			
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select	act Com	pressed (Zipped	I) Folders Extract File:	s		
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select	act Comp : a Dest I be extra	pressed (Zipped ination and cted to this fold	I) Folders Extract File: der:	s		
nastran_wo Compressed	r king_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil	act Comp a Dest l be extra	oressed (Zipped ination and cted to this fold I-sunshine\Dow	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil	act Comp a Dest I be extra rs\specia	oressed (Zipped ination and cted to this fold I-sunshine\Dow	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will C:\Use	act Comp : a Dest I be extra Issecia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when coo	I) Folders Extract File: Jer: wnloads\nastra mplete	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest l be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when col	I) Folders Extract File: Ier: vnloads\nastra mplete	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil C:\Use	act Comp a Dest l be extra rs\specia v extracte	ination and ination this fold -sunshine\Dow d files when cou	I) Folders Extract File: der: vnloads\nastrat	S n_working_di	rectory	 Browse
nastran_wo Compressed	rking_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest I be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastra mplete	S n_working_di	rectory	 Browse
nastran_wo Compressed	r king_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest I be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when co	I) Folders Extract File: Jer: vnloads\nastrat	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n i (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files wil C:\Use	act Comp a Dest l be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n l (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp : a Dest I be extra rs\specia v extracte	ination and cted to this fold -sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n l (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp : a Dest I be extra Is specia v extracte	oressed (Zipped ination and cted to this fold -sunshine\Dow d files when co	I) Folders Extract File: Jer: vnloads\nastra mplete	S n_working_di	rectory	Browse
nastran_wo Compressed	rking_directory.zip Date n I (zipped) Folder	nodified: 2/25/2 Size: 114 bytes		Select Files will	act Comp a Dest l be extra rs\specia v extracte	oressed (Zipped ination and cted to this fold I-sunshine\Dow d files when co	I) Folders Extract File: der: vnloads\nastral	S n_working_di	rectory	Browse

Perform the Optimization with Nastran SOL 200

- 1. Inside of the new folder, double click on Start MSC Nastran
- 2. Click Open, Run or Allow Access on any subsequent windows
- 3. MSC Nastran will now start
- After a successful optimization, the results will be automatically displayed as long as the following files are present: BDF, F06 and LOG.
- One can run the Nastran job on a remote machine as follows:

 Copy the BDF files and the INCLUDE files to a remote machine.
 Run the MSC Nastran job on the remote machine.
 After completion, copy the BDF, F06, LOG, H5 files to the local machine.
 Click "Start MSC Nastran" to display the results.

Using Linux?

Follow these instructions:
1) Open Terminal
2) Navigate to the nastran_working_directory cd ./nastran_working_directory
3) Use this command to start the process ./Start_MSC_Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x ./nastran_working_directory

🔾 🗸 🖳 🗸 Downl 🕨 nastran_working_directory 🕨 🗸 😽	Search nastran_worki	ing_dir 🔎
Organize 🔻 Include in library 👻 Share with 👻 New folder	:== ▼	
Favorites A Name	Date modified	Туре
Desktop	2/24/2018 1:57 PM	File folder
Downloads	2/24/2018 1:57 PM	BDF File
🖳 Recent Places 🛛 🕅 model.bdf	2/24/2018 1:57 PM	BDF File
ConeDrive	2/24/2018 1:57 PM	Shortcut
 □ Libraries □ Documents □ Music □ Pictures □ Videos 		
₩ Computer		

SOL 200 Web App - Status

Status

Republic Python MSC Nastran

Status

1. While MSC Nastran is running, a status page will show the current state of MSC Nastran

Name	Status of Job	Design Cycle	RUN TERMINATED DUE TO
model.bdf	Running	None	

 The status of the MSC Nastran job is reported on the Status page. Note that Windows 7 users will experience a delay in the status updates. All other users of Windows 10 and Red Hat Linux will see immediate status updates.

Review Optimization Results

After MSC Nastran is finished, the results will be automatically uploaded.

- Ensure the messages shown have green checkmarks. This is indication of success. Any red icons indicate challenges.
- 2. The final value of objective, normalized constraints (not shown) and design variables can be reviewed.
- After an optimization, the results will be automatically displayed as long as the following files are present: BDF, F06 and LOG.
- The total weight of the structure is ~110 units of mass, but the Objective plot is reporting an initial mass of ~20. Recall earlier that the equation objective was set as follows: R0 = a1 90, where a1 = ~110. After evaluation, the initial objective is R0 = ~20.

Final Message in .f06

RUN TERMINATED DUE TO HARD CONVERGENCE TO AN OPTIMUM AT CYCLE NUMBER = 6.

Objective

1

Results

Before Optimization

- Weight: 19.2 lbs.
- 1st Natural Frequency: 26 Hz

After Optimization

- Weight: 6.97 lbs.
- 1st Natural Frequency: 20 Hz

MSC Nastran Design Sensitivity and Optimization User's Guide Chapter 8 - Example Problems - Vibration of a Cantilevered Beam (Turner's Problem)

- 1. The original input files, e.g. DAT, BDF, etc., contains the original values for the designed properties. These original values must be updated to use the new and optimized values.
- A new BDF file has been created in nastran_working_directory/workspace_b/ model_final.bdf.
- 3. The file model_final.bdf is a copy of the original input files but the original values for the designed properties have been updated to use the optimized values.
- If you were using multiple INCLUDE files, model_final.bdf is a combination of all INCLUDE files. The next few slides discuss an alternative method of using the PCH to BDF web app to update the values for the designed properties while preserving separate INCLUDE files.

Carlo - 🔒 « nast	an working directory 🕨 workspace b 🚽 👍	Search workspace	×
Organize 👻 Inclu	de in library ▼ Share with ▼ New folder	:≡ ▼ 🗔 🌘	2
☆ Favorites	Name	Date modified	Ту
💻 Desktop 🕕 Downloads	model_final.bdf	7/20/2022 2:32 PM	No
📳 Recent Places			
肩 Libraries	▼ <		Þ

Original Input Files

				•				
\$ Elemen	nts and	Element	Propertie	es	for	region	1	Spar_Cap_A
PROD	201	1	1.0	Ο.	0			
\$ Elemen	nts and	Element	Propertie	es.	for	region	:	Spar_Cap_B
PROD	202	1	1.0	Ο.	0			
\$ Elemen	nts and	Element	Propertie	s	for	region	:	Spar_Cap_C
PROD	203	1	1.0	Ο.	0			
Ş								
CQUAD4	4	204	1	2		6		5
CQUAD4	5	205	2	3		7		6
CQUAD4	6	206	3	4		8		7
\$ Elemen	nts and	Element	Propertie	es.	for	region	:	Spar_Web_A
PSHELL	204	1	0.2					
\$ Elemen	nts and	Element	Propertie	s	for	region	:	Spar_Web_B
PSHELL	205	1	0.2					
\$ Elemen	nts and	Element	Propertie	s	for	region	:	Spar_Web_C
PSHELL	206	1	0.2					
Ş								
CONM2	10	2		15	.0			
CONM2	11	3		15	.0			
			(1)					
			<u> </u>					

Updated BDF File (model_final.bdf)

\$ Elements	and Element	P	operties	for	regi	ion :	Spar Cap A	
PROD	201	1	.869879	0.0)	0.0	0.0	
<pre>\$ Elements</pre>	and Element	P	operties	for	regi	ion :	Spar Cap B	
PROD	202	1	.435946	0.0)	0.0	0.0	
\$ Elements	and Element	P	operties	for	regi	ion :	Spar Cap C	
PROD	203	1	.10855	0.0)	0.0	0.0	
Ş								
CQUAD4 4	204	1	. 2		6		5	
CQUAD4 5	205	1	: 3		7		6	
CQUAD4 6	206	1	3 4		8		7	
\$ Elements	and Element	P	operties	for	regi	ion :	Spar Web A	
PSHELL	204	1	.044307		0	1.0	0.833333	0.0
			0					
\$ Elements	and Element	P	operties	for	regi	ion :	Spar Web B	
PSHELL	205	1	.040087		0	1.0	0.833333	0.0
			0					
\$ Elements	and Element	P	operties	for	regi	ion :	Spar Web C	
PSHELL	206	1	.02526		0	1.0	0.833333	0.0
			0					
			(3)					

- **Click Results**
- 2. Click PCH to BDF

Select a Results App

Local Optimization (.f06)

Parameter Study (.f06)

Responses (.f06)

THE AT LANSING MEET

Global Optimization Type 2 (.f06)

Sensitivities (.csv)

Topology Viewer (.des)

Miscellaneous Apps

The original .bdf/.dat file has old information about the properties. The properties will be updated.

- 1. Select the model.pch file
- 2. Select the original file: dsoug2.dat
- 3. A summary of updates that will be performed are shown
- 4. Click Download and a new updated BDF file is downloaded

SOL 200 Web App - PCH to BDF

PCH Entries

PSHELL 204 1 044307 0 1 0 0 833	
0	333 0.0
PSHELL 205 1.040087 0 1.0 0.8333 0	333 0.0

Step 2 - Select BDF Files (2)Select files dsoug2.dat Inspecting: 100% List of Selected Files **BDF Entries** PROD 201 1.0 0.0 1 1.0 0.0 PROD 202 1 1 1.0 0.0 PROD 203 PSHELL 204 1 0.2 PSHELL 205 1 0.2 PSHELL 206 0.2 1

Step 3 - Download New BDF Files

(3)

-

-

-

-

-

-

On download, the PCH entries will replace older BDF entries.

1. Note the entries have been updated with the optimized properties

								-		1										
dsoug2	.dat 🔛									📄 dsoug	2.dat 🔛									
23	GRID	3		40.0	0.0	-3.0	2	456	*	23	GRID	3		40.0	0.0	-3.0		2456		
24	GRID	4		60.0	0.0	-3.0	2	456		24	GRID	4		60.0	0.0	-3.0		2456		
25	GRID	5		0.0	0.0	3.0	1	23456		25	GRID	5		0.0	0.0	3.0		123456		
26	GRID	6		20.0	0.0	3.0	2	456		26	GRID	6		20.0	0.0	3.0		2456		
27	GRID	7		40.0	0.0	3.0	2	456		27	GRID	7		40.0	0.0	3.0		2456		
28	GRID	8		60.0	0.0	3.0	2	456		28	GRID	8		60.0	0.0	3.0		2456		
29	ş			-						29	Ş			-	-					
30	CROD	1	201	5	6					30	CROD	1	201	5	6					
31	CROD	2	202	6	7					31	CROD	2	202	6	7					
32	CROD	3	203	1	8					32	CROD	3	203		8					
33	CROD	1	201	1	2					33	CROD	-	201	1	2					
34	CROD	8	202	2	3					34	CROD	8	202	2	3					
35	CROD	9	203	3	4					35	CROD	9	203	3	4	norman a				_
37	PROD	201	1	1.0	0.0	region	. opar_cap_A			37	PROD	lenco	201	1 .86983	9 0.0	0 0.	0 0.0)
38	S Eleme	ents and	Element	Propert	ies for	region	Spar Cap B			38	\$ Elen	ents	and Element	Properti	es for	region	: Spar Cap	В		
9	PROD	202	1	1.0	0.0					39	PROD		202	1 .43594	6 0.0	0 0.	0 0.0			
40	S Eleme	ents and	Element	Propert	ies for	region	Spar Cap C			40	S Elen	ents	and Element	Properti	es for	region	: Spar Cap	C		
11	PROD	203	1	1.0	0.0					41	PROD		203	1 .10855	i 0.0	0 0.	0 0.0	-		
2	s		-							42	S			-		-				
3	CQUAD4	4	204	1	2	6	5			43	CQUAD4	4	204	1	2	6	5			٢.
14	CQUAD4	5	205	2	3	7	6		(1	44	CQUAD4	5	205	2	3	7	6			
15	CQUAD4	6	206	3	4	8	7			45	CQUAD4	6	206	3	4	8	7			
16	\$ ETeme	ents and	Element	Propert	les for	region	: Spar_web_A			40	\$ Elen	lents	and Element	Properti	les for	region	: Spar_web	_A		1
17	PSHELL	204	1	0.2						47	PSHELL		204	1 .04430	07	0 1.	0	0.833333	0.0	
8	\$ Eleme	ents and	Element	Propert	les for	region	Spar_Web_B			48					0			_		
9	PSHELL	205	1	0.2			Gran Mala G			49	ș Elen	lents	and Element	Properti	les ior	region	: spar_web	_B		
	> Eleme	ents and	Llement	Propert	les Ior	region	spar_web_C			50	PSHELL		205	1.04008	57	0 1.	0	0.833333	0.0	
1	PSHELL	206	1	0.2					=	51	0. 23		and Element	Deserves	0		. Caraca Mala	~		
2	CONMO	10	2		15 0					52	9 FIEL	lents	206	1 02524	es for	region 1	· Spar_web	0 000000	0.0	
4	CONMIZ	10	2		13.0					33	FOILELL		200	1.02520		· ·	0	0.000000	0.0	/
55	CONM2	12	4		15.0					55	Ş				-					
56	CONM2	14	6		15.0					56	CONM2	10	2		15.0					
57	CONM2	15	7		15.0					57	CONM2	11	3		15.0					
58	CONM2	16	8		15.0					58	CONM2	12	4		15.0					
59	Ş									59	CONM2	14	6		15.0					
60	\$ Mater	rial Reco	ord : Al	uminum						60	CONM2	15	7		15.0					
61	\$ Desci	ription (of Mater	ial : Da	te: 17-3	Apr-18	Tim	e: 17:36:49		61	CONM2	16	8		15.0					
62	MAT1	1	1.03E7		0.3	0.1				62	Ş									
63	PARAM	WTMASS	0.0025	88						63	\$ Mate	rial	Record : Al	uminum						
64	PARAM	GRDPNT	1							64	\$ Desc	ripti	on of Mater	ial : Dat	e: 17-2	Apr-18	Т	ime: 17:36	5:49	
65	ENDDAT	A								65	MAT1	1	1.03E7		0.3	0.1				
56										66	PARAM	WTM.	ASS 0.0025	88						
									*	N										

Original BDF/DAT File

Downloaded BDF/DAT File

Inspection of MSC Nastran Results with the Post-processor Web App

Normalized Constraints

- All constraints are normalized. For each design cycle, the maximum normalized constraint (NC) is reported in the Normalized Constraints plot.
- The Responses web app is used to inspect the corresponding response for each maximum normalized constraint value.
 - For the initial design, the maximum NC is -.29473 and corresponds to a natural frequency of 25.895.
 - For the final design, the maximum NC is .0028704 and corresponds to an axial stress of 19.943.

Post-processor Web App

- The Post-processor web app is used to inspect the MSC Nastran results.
- Consider subcase 1.
 - For the initial design, for element 1, the axial stress is 25.895.
 - For the final design, for element 1, the axial stress is 19.943.

 Refer to the Post-processor web app tutorials to learn more about MSC Nastran results.

Post-processor

Post-processor

< >

Post-processor Web App

- The CROD cross sections of the initial and final design are compared.
- The CQUAD4 thicknesses of the initial and final design are compared

• Refer to the Post-processor web app tutorials to learn more about MSC Nastran results.

End of Tutorial

Appendix

Appendix Contents

- Frequently Asked Questions
 - There are thousands of properties that have been identified as designable. How can the properties best be sorted so the thicknesses can be set as design variables?

Frequently Asked Questions

Question:

 There are thousands of properties that have been identified as designable. How can the properties best be sorted so the thicknesses can be set as design variables? Step 2 - Select design properties

+ Options

Create DVXREL1	Property \$	Property Description \$\\$	Entry \Rightarrow		Current Value 💠							
	Search	Search	Search Search					Search				
•	SB	Allowable shear stress of the bondin	PCOMP	1	1	13000.						
+	T1	Thickness of ply	PCOMP 1					.01				
+	THETA1	Orientation angle of ply	PCOMP	1	8	85.						
+	Т2	Thickness of ply	PCOMP 1					.01				
+	THETA2	Orientation angle of ply	PCOMP	-	-85.							
+	тз	Thickness of ply	PCOMP 1					.01				
+	THETA3	Orientation angle of ply	PCOMP	1	e	60.						
+	Т4	Thickness of ply	PCOMP	1		.01						
+	THETA4	Orientation angle of ply	PCOMP	1	-	-60.						
+	Т5	Thickness of ply	PCOMP	1		.01						
+	THETA5	Orientation angle of ply	PCOMP	1	e	60.						
+	т6	Thickness of ply	PCOMP	1		.01						
+	THETA6	Orientation angle of ply	PCOMP	1	-	-60.						
+	т7	Thickness of ply	PCOMP	1		.01						
+	THETA7	Orientation angle of ply	PCOMP	1	8	85.						
+	тв	Thickness of ply	PCOMP	1		.01						
+	THETA8	Orientation angle of ply	PCOMP	1	-	-85.						
+	E1	Modulus of elasticity, 1-direction	MAT8	1	1	1.0701+7						
+	E2	Modulus of elasticity, 2-direction	MAT8	1	ę			543750.				
+	NU12	Poisson's ratio	MAT8	1	.4							
« 1 2 »					5 *	10	20	30	40	50		

Step 2 - Select design properties

Frequently Asked 1 Questions

Answer:

- There are search options available for the table
 - Click on Options 1.
 - Click 'Starts with' 2
 - Type 'T' in the search box 3.
 - Click on Property twice to sort the table in 4. sequential order
 - 5. Type into the box the number 8 to display only 8 rows
- Also, there is an option to create multiple design variables in one click
 - 6. Specify lower and upper bounds
 - 7. Click 'Create' and all the visible properties will be set as design variables

Display Type	% Lower Bound	% Upper Bound	Lower Bound	Upper Bound	Allowed Discrete Values or Equation	Bulk Create
			6			
JVXREL1	Lower	Upper	.001	10.	Allowed discrete values, example: -2.0, 1.0, THRU, 10.0, BY, 1.0	
DVXREL1 Unity	Lower	Upper	.001	10.	Allowed discrete values, example: -2.0, 1.0, THRU, 10.0, BY, 1.0	
DVXREL2	Lower	Upper	.001	10.	Type equation here, example: y1**2 + x2 + k3	🗲 Create
D TOMVAR	Lower	Upper	.001	10.	Allowed discrete values, example: -2.0, 1.0, THRU, 10.0, BY, 1.0	

Display Columns

Create DVXREL1 Create Unity DVXREL1 Create TOMVAR C Entry Name 2

Settings for row filtering in tables

○ Contains (Case Non-Sensitive) ○ Contains ● Starts with ○ Ends with ○ Equals

Create DVXREL1	Property -4	Property Description \ddagger	Entry ≑	Entry ID ≑	Current Value 👙	
	ТЗ	Search	Search	Search	Search	
÷	T1	Thickness of ply	PCOMP	1	.01	
•	T2	Thickness of ply	PCOMP	1	.01	
+	ТЗ	Thickness of ply	PCOMP	1	.01	
+	Τ4	Thickness of ply	PCOMP	1	.01	
+	Т5	Thickness of ply	PCOMP	1	.01	
+	Т6	Thickness of ply	PCOMP	1	.01	
+	Т7	Thickness of ply	PCOMP	1	.01	
•	Т8	Thickness of ply	PCOMP	1	.01	

5

5 10 20 30

