# Workshop – Optimization Under Uncertainty - 53 Bar Truss

AN UNCERTAINTY QUANTIFICATION AND OPTIMIZATION UNDER UNCERTAINTY TUTORIAL WITH SANDIA DAKOTA AND MSC NASTRAN



# Goal: Use Optimization Under Uncertainty (OUU) to Limit Failure to 5%

Initial Analysis Model Prior To Optimization

Optimization for Deterministic Responses (MSC Nastran SOL 200) Optimization for Stochastic Responses (Sandia Dakota OUU)

#### **Optimal Solution**

- Variables
  - x1 = 0.01
  - x2 = 0.01
  - ...
  - x53 = 0.01
- Objective:
- 15.87573E+02
- Max probability of failure:
  - ~0.00% (Actual after UQ with 80 run LHS)

**Optimal Solution** 

- Variables
  - x1 = 8.0647E-04
  - x2 = 1.2097E-03
  - ...
  - x53 = 5.7026E-04
- Objective:
  - 1.156488E+02
- 7 MSC Nastran Runs
- Max probability of failure:
  - 66% (Actual probability after UQ with LHS of size 200 (200 MSC Nastran runs))

**Optimal Solution** 

- Variables
  - x1\_mean = 1.3179002125e-03
  - x2\_mean = 1.7973456563e-03
  - [...]
  - x53\_mean = 1.0674418472e-03
- Objective:
  - 1.8957040000e+02
- 282 MSC Nastran Runs
- Max probability of failure:
  - 5% (Approximated probability after final OUU iteration)
  - 5% (Actual probability after UQ with LHS of size 200 (200 MSC Nastran runs))



# Uncertainty Quantification Problem Statement





# Optimization Under Uncertainty (OUU) Problem Statement





# Why a value of 248.E6 instead of 310.E6?

The yield strength of the material in both tension and compression is 310.E6. Instead of constraining the axial stress to 310.E6, the axial stress is constrained to 248.E6 during the OUU. Why?

The goal is to have a probability of failure less than 5% where the upper bound on stress is 310E6.

- While crafting this tutorial, an attempt was made to perform an OUU where the upper bound was 310E6 and a maximum of 3% probability of failure was imposed. The OUU uses the MVFOSM method for uncertainty quantification, but approximates the statistics. The approximation has an error when compared to the actual statistics, as can be shown in the plot of the approximated and actual probability density functions (PDF). Consequently, the OUU might lead to a feasible solution based on approximated statistics, but upon verification, the actual statistics show the solution is infeasible where some of the probabilities of failure exceed 5%.
- 2. The OUU was repeated but the upper bound was reduced by 20% to 248E6 and a maximum of 5% probability of failure was imposed. This approach led to a solution that after verification showed the actual probabilities of failure were less than 5%. Why was 20% used? This percentage was determined via trial and error. 15% was shown to yield a good solution, so a conservative value of 20% was ultimately used.



**HEXAGON** 

echnology Partne

## How were the initial values of the OUU variables determined?

Prior to this exercise, an MSC Nastran SOL 200 optimization was performed to yield an optimal solution (x1, x2, ..., x53) = (8.0647E-04, 1.2097E-03, ..., 5.7026E-04). The original analysis model values were (x1, x2, ..., x53) =(0.01, 0.01, ..., 0.01).

The OUU was configured in 2 separate ways. In trial 1, the initial values of the OUU variables were equal to the original analysis model values (0.01, 0.01, ..., 0.01). In trial 2, the initial values of the OUU variables were equal to the optimal solution values (8.0647E-04, 1.2097E-03, ..., 5.7026E-04).

When the initial values from a SOL 200 optimization are used, see trial 2, the optimizer converges faster during OUU than trial 1. Why? It is reasoned that in trial 1, the optimizer has to travel further to reach the optimal solution. The SOL 200 solution in trial 2 is possibly closer to the OUU solution, so the optimizer during OUU would have to travel a smaller distance to the optimal solution and would require fewer MSC Nastran runs.

Prior to OUU, it is recommended to perform a local optimization or global optimization to determine ideal initial values for OUU variables.

| OUU<br>Trial | Initial Values                                                            | Comments                                                                                                    | Number of MSC Nastran<br>Runs to Converge During<br>OUU | OUU Solution                                                                                                           |
|--------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Trial 1      | x1_mean = 0.01<br>x2_mean = 0.01<br><br>x53_mean = 0.01                   | These were the<br>original analysis<br>model values with no<br>prior optimization.                          | 340                                                     | x1_mean = 3.3741703868e-03<br>x2_mean = 3.3741703868e-03<br><br>x53_mean = 1.0612358999e-<br>03<br>Objective = 403.702 |
| Trial 2      | x1_mean = 8.0647E-04<br>x2_mean = 1.2097E-03<br><br>x53_mean = 5.7026E-04 | The initial values are<br>based on the optimal<br>solution after an MSC<br>Nastran SOL 200<br>optimization. | 282                                                     | x1_mean = 1.3179002125e-03<br>x2_mean = 1.7973456563e-03<br><br>x53_mean = 1.0674418472e-<br>03<br>Objective = 189.57  |



## More Information Available in the Appendix

## The Appendix includes information regarding the following:

- Interpreting the Dakota Input File
- Cumulative and Complementary Probabilities
- Probabilities, Reliability Index and Generalized Reliability Index
- Configuring bounds for probabilities of failure in Sandia Dakota
- Configuring bounds for both UQ and OUU variables in Sandia Dakota





## Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com



# Tutorial



# **Tutorial Overview**

- 1. Start with a .bdf and .h5 file
- 2. Use the SOL 200 Web App to:
  - Configure an Optimization Under Uncertainty
    - Design Variables
    - Design Objective
    - Design Constraints
  - Perform optimization
- 3. Plot the Optimization Results

#### **Special Topics Covered**

**Optimization Under Uncertainty For Numerous Uncertain Variables** -Uncertainty quantification and optimization under uncertainty will require hundreds or thousands of black box function runs when dozens or hundreds of uncertain variables are considered. Strategies are necessary to minimize the number of black box function runs necessary to reach a converge solution. This exercise discusses such strategies and steps needed to configure an OUU for numerous uncertain variables.



# SOL 200 Web App Capabilities

#### Compatibility

- Google Chrome, Mozilla Firefox or Microsoft Edge Installable on a company laptop, workstation or
- Windows and Red Hat Linux

server. All data remains within your company.

The Post-processor Web App and HDF5 Explorer are free to MSC Nastran users.

#### Benefits

entries.

- REAL TIME error detection. 200+
- error validations.
- REALT TIME creation of bulk data
- Web browser accessible
- Free Post-processor web apps
- +80 tutorials

## Web Apps



Web Apps for MSC Nastran SOL 200 Pre/post for MSC Nastran SOL 200. Support for size, topology, topometry, topography, multi-model optimization.



Shape Optimization Web App Use a web application to configure and perform shape optimization.



Machine Learning Web App Bayesian Optimization for nonlinear response optimization (SOL 400)



**Remote Execution Web App** Run MSC Nastran jobs on remote Linux or Windows systems available on the local network



**PBMSECT Web App** Generate PBMSECT and PBRSECT entries graphically



**Dynamic Loads Web App** Generate RLOAD1, RLOAD2 and **DLOAD** entries graphically



Ply Shape Optimization Web App Optimize composite ply drop-off locations, and generate new **PCOMPG** entries



Stacking Sequence Web App Optimize the stacking sequence of composite laminate plies



browser on Windows and Linux



HDF5 Explorer Web App Create graphs (XY plots) using data from the H5 file



## Before Starting

1. Ensure the Downloads directory is empty in order to prevent confusion with other files





The Engineering Lab

## Go to the User's Guide

1. Click on the indicated link

• The necessary BDF files for this tutorial are available in the Tutorials section of the User's Guide.

## Select a web app to begin Before After Optimization for SOL 200 Multi Model Optimization Machine Learning | Parameter HDF5 Explorer Viewer Study Tutorials and User's Guide (1)Full list of web apps

SOL 200 Web App



## Obtain Starting Files

- 1. Find the indicated example
- 2. Click Link
- 3. The starting file has been downloaded



Optimization Under Uncertainty - 53 Bar Truss (1)

Both uncertainty quantification (UQ) and optimization under uncertainty (OUU) may require hundreds or thousands of black box function evaluations when considering a large number of uncertain variables. Certain black box functions will require hours or days for a single run, so thousands of black box function evaluations are impractical. Finite element solvers are such black box functions where at most a

Starting BDF Files Link 2 Solution BDF Files: Link





## Obtain Starting Files

- 1. Right click on the zip file
- 2. Select Extract All...
- 3. Click Extract
- 4. The starting files are now available in a folder





# Part A – Optimization Under Certainty



## Open the Correct Page

1. Click on the indicated link

- MSC Nastran can perform many optimization types. The SOL 200 Web App includes dedicated web apps for the following:
  - Optimization for SOL 200 (Size, Topology, Topometry, Topography, Local Optimization, Sensitivity Analysis and Global Optimization)
  - Multi Model Optimization
  - Machine Learning
- The web app also features the HDF5
   Explorer, a web application to extract results from the H5 file type.



## SOL 200 Web App Select a web app to begin Before After 1 Optimization for SOL 200 Multi Model Optimization Machine Learning | Parameter HDF5 Explorer Viewer Study Tutorials and User's Guide Full list of web apps



## Select BDF Files

- 1. Click Select files
- 2. Navigate to this directory
- 1\_starting\_files/1\_starting\_files
- 3. Select the indicated file
- 4. Click Open
- 5. Click Upload files

 When starting the procedure, all the necessary BDF, or DAT, files must be collected and uploaded together. Relevant INCLUDE files must also be collected and uploaded. < >

#### Select BDF Files 1 3 files selected . Select files (5) Uploading: 100 % 📀 Open × 🕞 🕞 🗢 📙 « 1\_starting\_files 🕨 1\_starting\_files 🕨 🤇 2 ✓ 4→ Search 1\_starting\_files Q Organize 🔻 New folder .... 2 . Name Date modified Type ☆ Favorites E Desktop workspace\_d 11/12/2024 7:03 AM File folder Downloads app.config 11/12/2024 1:25 AM CONFIG F E Recent Places 📔 design\_model.bdf 🌈 11/12/2024 1:25 AM Notepad+ (3) 📓 model.bdf 11/12/2024 1:25 AM Notepad+ 📄 Libraries Documents Music Pictures Videos π ₹ 111 Computer Custom Files (\*.bdf;\*.dat;\*.inc;\* 🔻 File name: "app.config" "design\_model.bdf" ' 🖛 Open Cancel -4



## Parameters

No modifications are required in the following steps. Only inspection is required.

- 1. 53 parameters, or variables, have already been configured
- Use the vertical scroll bar to scroll to the DESVAR entries
- B. The variables correspond to the initial value of DESVAR entries. Each DESVAR entry corresponds to a cross section area of a member of the truss. The OUU will vary the initial value of the DESVAR entry, which will vary the cross section area of each member of the truss.
- If gradients are expected to be provided to Dakota, select only the initial values of DESVAR entries.
  - When the initial values of DESVASR entries are selected, only the independent DESVAR entries should be selected.
- If gradients are not expected, any other field with real values may be selected.

Comments

Add description of parameter

**Configure Parameters** 

#### Select Parameters





## Adjust the Column Width

- Description of the set of the
- Optional Use the indicated buttons to adjust the width of the column Select Dataset

 IMPORTANT! This image is not meant to match exactly what you see in your view. The text in this image is expected to be different from your view. The purpose of this page and image is to demonstrate how to increase the width of the indicated sections.

| SOL 200 Web App - Mach | hine Learning   | Parameters           | Samples   | Responses | Download               | Results        |        |                     |        |        |              |                | Settin                     | gs User's Guide                             | Home          |
|------------------------|-----------------|----------------------|-----------|-----------|------------------------|----------------|--------|---------------------|--------|--------|--------------|----------------|----------------------------|---------------------------------------------|---------------|
| Select Responses       | s to Monito     | or                   |           | Sessi     | on ID: 3981            | HDF5           | +      | View F              | Respo  | onses  | to Moni      | tor            |                            |                                             | )             |
| Select Dataset         |                 |                      |           |           |                        |                |        | Monitored           | Respon | ises   |              | II Hide/Shov   | v Columns 🔻 F              | Reset Filters 보 Download C                  | )SV           |
|                        | NODAL/GRID_WEIG | GHT - 1<br><b>MO</b> | s         | MX        | xx                     |                |        | Delete              | Label  | Status | Objective    | Lower          | Upper                      | Monitor the response<br>of the FINAL design | se<br>n       |
| •                      |                 |                      | -         |           |                        | -†             |        |                     | r1     | Status | v            | Lower          | Upper                      |                                             | <i>n</i><br>✓ |
| L''                    |                 |                      |           |           |                        |                |        |                     |        |        |              |                |                            |                                             |               |
| SOL 200 Web App - Maci | hine Learning   | Parameters           | s Samples | Responses | Download               | Results        |        |                     |        |        |              |                | Setting                    | gs User's Guide                             | Home          |
| Select Responses       | s to Monit      | or                   |           |           |                        |                |        | ٦                   |        |        |              |                |                            | <                                           |               |
| Ociect Response.       |                 | 51                   |           |           | Ses                    | ssion ID: 3981 | 🛱 HDF5 | View F              | Respo  | onses  | to Monif     | tor            |                            |                                             |               |
| Select Dataset         | 1               | Acquired Data        | aset      |           | l                      | Reset Filters  | < >    | Monitored Responses |        |        | II Hide/Show | / Columns  🔻 R | Reset Filters 🛃 Download C | SV                                          |               |
|                        | <u>^</u>        |                      | IGHT - 1  | — — S— —  | — — <del>M</del> X — - | xx             |        |                     |        |        |              | Lower          | Upper                      | Monitor the response                        | e             |
|                        | -               |                      |           |           |                        |                |        | Delete              | Label  | Status | Objective    | Bound          | Bound                      | cycle (SOL 200 only                         | )             |
|                        | 11              |                      |           |           |                        |                |        | ×                   | r1     | 0      | ~            | Lower          | Upper                      |                                             | ~             |
|                        |                 |                      |           |           |                        |                |        |                     |        |        | ,            |                |                            |                                             |               |



1

#### View Responses to Monitor

Monitored Responses I Hide/Show Columns ▼ Reset Filters L Download CSV Monitor the maximum or minimum Monitor the response of the FINAL design Lower Upper response, whichever has the Delete Label Status Objective Bound Bound cycle (SOL 200 only) greatest absolute value \* r1 OPTIMIZATIC r2 OPTIMIZATIO r3 r4 Ŧ -5 (2) × O r1 Upper  $\mathbf{v}$  $\mathbf{v}$ OPTIMIZATIO ¥ Lower (3) × r2 0 -310.E6 310.E6  $\mathbf{v}$  $\mathbf{v}$ OPTIMIZATIO  $\sim$ × O r3 -310.E6 310.E6 OPTIMIZATIO  $\sim$  $\mathbf{v}$  $\mathbf{v}$ × 0 r105 -310.E6 310.E6 ~ ✓ OPTIMIZATIC ~ × 0 r106 -310.E6 310.E6  $\sim$ OPTIMIZATIO × ~ × 0 r107 -310.E6 310.E6 ~ ✓ OPTIMIZATIO  $\sim$ 4 2 1 5 10 20 30 50 100 «

#### Questions? Email: christian@ the-engineering-lab.com



## Responses

1. Click Responses

Responses have already been configured.

- 2. Response r1 corresponds to the weight
- 3. Responses r2 through r107 correspond to the axial stress of each member for subcases 1 and 2
- Click page 2 to view the additional responses

21

## Dakota

- 1. Click Dakota
- 2. Set UQ Method to Local Reliability
- 3. Set MPP Search Option to none MVFOSM
- 4. Set OUU Approach to Bi-level
- Reliability, or local reliability, methods refers to a group of techniques to determine the tail probabilities of normally distributed responses and requires the availability of gradients for the responses. Reliability methods can employ the MVFOSM method to approximate the tail probabilities or can employ MPP search methods to determine the tail probabilities. The OUU approach refers to how often the optimizer runs the black box function. Readers are referred to the Dakota User's Manual and Theory Manual for more information.
- Outside of this exercise, a previous LHS was performed and revealed the responses were normally distributed. MSC Nastran SOL 200 can also output gradients/sensitivities for the responses. Since gradients are available, reliability methods may be used during the OUU. Also, since the standard deviations of the UQ variables are small, the response functions are locally smooth and nearly linear. The Mean Value First-Order Second-Moment Method (MVFOSM) yields an acceptable level of approximating the tail probabilities.

| SOL 200 W    | /eb App - | Machine | Learning   | Parameters | Responses    | Dakota                             | Download                         | Results                            |
|--------------|-----------|---------|------------|------------|--------------|------------------------------------|----------------------------------|------------------------------------|
| Wizard       | Method    | Model   | Inspection |            |              |                                    |                                  |                                    |
| Wizard       |           |         |            |            |              |                                    |                                  |                                    |
|              |           |         |            |            |              | <ul><li>UQ -</li><li>OUU</li></ul> | Uncertainty Qu<br>- Optimization | iantification<br>Under Uncertainty |
| UQ Method    |           |         |            |            | OUU Approach |                                    |                                  |                                    |
| Local Reliat | pility 2  |         |            | *          | Bi-level     | 4                                  |                                  | ~                                  |
| MPP Search C | Option    |         |            |            |              |                                    |                                  |                                    |
|              |           |         |            |            |              |                                    |                                  |                                    |



### Dakota -Uncertainty Quantification (UQ)

- 1. Scroll to section Uncertainty Quantification
- 2. The distribution, mean and standard deviation have already been configured for each variable. No modifications are necessary.

- Variables that are normally distributed allow for negative values. This is problematic if the variable should always be positive. In this example, the cross sectional area is varied and should always be positive, else if the area is negative, the FEA solver will fail. A lognormal distribution allows for only positive values. The variables in this exercise are configured as having a lognormal distribution.
- The standard deviation is often determined via testing or provided by the supplier or manufacturer.
- In this exercise, bounds are not provided for the uncertain variables. Bounds are provided for the optimization variables later on in this exercise. If there is a desire to provide bounds for the uncertain variables, refer to the information in the Appendix, section *Configuring bounds for both UQ and OUU variables in Sandia Dakota*.



#### Configure UQ Variables

| Delete | Descriptor | Status | Distribution     | Mean    | Standard<br>Deviation | Initial Value | Lower Bound   | Upper Bound   | Description |
|--------|------------|--------|------------------|---------|-----------------------|---------------|---------------|---------------|-------------|
|        | Search     |        | Search           | Search  | Search                | Search        | Search        | Search        | Search      |
|        |            |        | Lognormal 🗸 🕇    | Batch 🖊 | Batch 🖊               | Batch 🖊       | Batch 🖊       | Batch 🖊       |             |
| ×      | x1         | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x2         | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x3         | •      | Lognormal Unc 🗸  | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x4         | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x5         | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                | (2)           | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x6         | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x7         | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x8         | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x9         | •      | Lognormal Unc 🗸  | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |
| ×      | x10        | •      | Lognormal Un 🗸 🗸 | .01     | 0.0005                |               | UQ Lower Boun | UQ Upper Boun |             |

Questions? Email: christian@ the-engineering-lab.com

1 2 3 4 5 6 »

«



10

20

30

40

50

**T**Reset Table

## Dakota -Uncertainty Quantification (UQ)

- 1. Navigate to section Select OUU Variables
- 2. Set the number of visible rows to 50
- 3. Click On
- 4. All the visible variable's means have been automatically be set as OUU variables

#### Select OUU Variables 1

| Descriptor | Initial Value | Mean       | Description |
|------------|---------------|------------|-------------|
| Search     | Search        | Search     | Search      |
|            | Off COn       | Off COn 3  |             |
| d          |               | + Mean (4) |             |
| <2         |               | + Mean     |             |
| x3         |               | + Mean     |             |
| x4         |               | + Mean     |             |
| x5         |               | + Mean     |             |
| x6         |               | + Mean     |             |
| <7         |               | + Mean     |             |
| 8          |               | + Mean     |             |
| (9         |               | + Mean     |             |
| <10        |               | + Mean     |             |
|            |               |            |             |





= . . . . . .



## Dakota -Uncertainty Quantification (UQ)

- Click page 2 to view the next set of rows of the table
- 2. Click On
- 3. All the visible variable's means have been automatically be set as OUU variables
- Click the indicated button to view at most 10 rows in the table. Reducing the number of visible rows helps improve the performance of the web app.

#### Optimization Under Uncertainty

#### Select OUU Variables

|            |               |          | TReset Table |
|------------|---------------|----------|--------------|
| Descriptor | Initial Value | Mean     | Description  |
| Search     | Search        | Search   | Search       |
|            | O Off C On    | □ Off    |              |
| x51        |               | + Mean 3 |              |
| x52        |               | + Mean   |              |
| x53        |               | + Mean   |              |
|            | _             |          |              |

« 1 2 » 1





Configure OUU Variables 1

## Dakota -Optimization Under Uncertainty (OUU)

- 1. Scroll to section Configure OUU Variables
- 2. Set the number of visible rows to 50
- 3. Set the indicated input box to .00001
- 4. Click the indicated button
- 5. A lower bound of .00001 has been defined for each visible variable
- 6. Set the indicated input box to 1.0
- 7. Click the indicated button
- 8. An upper bound of 1.0 has been defined for each visible variable

| Delete | Descriptor | Status | Initial Value | Lower Bound | Upper Bound | Description |
|--------|------------|--------|---------------|-------------|-------------|-------------|
|        | Search     |        | Search        | 3 irch 4    | 6 arch 7    | Search      |
|        |            |        | Batch         | .00001      | 1.0         |             |
| ×      | x1_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x2_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x3_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x4_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x5_mean    | 0      | .01           | .00001 5    | 1.0 8       | Mean -      |
| ×      | x6_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x7_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x8_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x9_mean    | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x10_mean   | 0      | .01           | .00001      | 1.0         | Mean -      |



10 20 30 40 50 2

**T**Reset Table



#### Configure OUU Variables

### Dakota -Optimization Under Uncertainty (OUU)

- 1. Click page 2 to view the next set of rows of the table
- 2. Set the indicated input box to .00001
- 3. Click the indicated button
- 4. A lower bound of .00001 has been defined for each visible variable
- 5. Set the indicated input box to 1.0
- 6. Click the indicated button
- 7. An upper bound of 1.0 has been defined for each visible variable

| Delete | Descriptor | Status | Initial Value | Lower Bound | Upper Bound | Description |
|--------|------------|--------|---------------|-------------|-------------|-------------|
|        | Search     |        | Search        | 2 irch 3    | 5 rch 6     | Search      |
|        |            |        | Batch 🕨       | .00001      | 1.0         | ]           |
| ×      | x51_mean   | 0      | .01           | .00001      | 1.0         | Mean -      |
| ×      | x52_mean   | 0      | .01           | .00001 4    | 1.0 7       | Mean -      |
| ×      | x53_mean   | 0      | .01           | .00001      | 1.0         | Mean -      |

« 1 2 » 1

10 20 30 40 50

TReset Table



### Dakota -Optimization Under Uncertainty (OUU)

A separate optimization was performed with MSC Nastran SOL 200 and considered responses that were deterministic. The solution of that optimization is used as the initial starting point for the OUU.

- 1. Set the number of visible rows to 10
- 2. Click page 1 to view the first set of rows of the table
- 3. Specify the following initial values for variables x1\_mean through x4\_mean
  - 8.0647E-04
  - 1.2097E-03
  - 1.6129E-03
  - 1.6129E-03
- 4. It will be too time consuming to update each initial value. For now, only 4 variables are updated and the initial values for the other variables are left as is. Later in this exercise, all the initial values will be updated using a faster procedure.

| Config | ure OUU Variables  |                   |                 |               | File:<br>./1_starting_<br>model.f06 | _files/0_so                          | lution_files_sol              | _200_lc            | ocal_optimiza                                       | ation/ |
|--------|--------------------|-------------------|-----------------|---------------|-------------------------------------|--------------------------------------|-------------------------------|--------------------|-----------------------------------------------------|--------|
| Delete | Descriptor         | Descriptor Status |                 | Initial Value |                                     | EXTERNAL<br>DV. ID.                  | <br> <br>  LABEL              |                    |                                                     |        |
|        | Search             |                   | Search<br>Batch | t             |                                     | 100001                               | X1<br>  X2                    | <br>  8.<br>  1.   | .0647E-04 :<br>.2097E-03 :                          | <br>]  |
| ×      | x1_mean            | 0                 | 8.0647E-04      | 3             |                                     | 100003<br>100004<br>100005<br>100006 | X4<br>  X5<br>  X6            |                    | .6129E-03<br>.6129E-03<br>.6129E-03 :               |        |
| ×      | x2_mean<br>x3_mean | 0                 | 1.2097E-03      |               | 7  <br>8  <br>9                     | 100007<br>100008<br>100009           | X7<br>  <del>X8</del><br>  X9 | 1.<br>  1.<br>  8. | .6129E-03 :<br><del>2097E-03 :</del><br>.0647E-04 : |        |
| ×      | x4_mean            | 0                 | 1.6129E-03      | J             | 10  <br>11  <br>12                  | 100010<br>100011<br>100012           | X10<br>  X11<br>  X12         | 4.<br>  5.<br>  4. | .0324E-04 :<br>.7026E-04 :<br>.0324E-04 :           |        |
| ×      | x5_mean            | 0                 | .01             |               |                                     | 100013                               | X13                           | 8.                 | .0647E-04 :                                         |        |
| ×      | x6_mean            | 0                 | .01             |               | .00001                              |                                      | 1.0                           |                    | Mean -                                              |        |
| ×      | x7_mean            | 0                 | .01             |               | .00001                              |                                      | 1.0                           |                    | Mean -                                              |        |
| ×      | x8_mean            | 0                 | .01             |               | .00001                              |                                      | 1.0                           |                    | Mean -                                              |        |
| ×      | x9_mean            | 0                 | .01             |               | .00001                              |                                      | 1.0                           |                    | Mean -                                              |        |
| ×      | x10_mean           | 0                 | .01             |               | .00001                              |                                      | 1.0                           |                    | Mean -                                              |        |

## « 1 2 3 4 5 6 » 2





### Dakota -Optimization Under Uncertainty (OUU)

- 1. Navigate to section Configure OUU Constraints
- 2. Set Statistics to compute at each response level to Reliabilities
- 3. Set the number of visible rows to 50
- 4. Set the indicated input box to 5
- 5. Click the indicated button
- 6. A maximum probability of failure of 5% has been defined for each response's lower bound
- 7. Set the indicated input box to 5
- 8. Click the indicated button
- 9. A maximum probability of failure of 5% has been defined for each response's upper bound
- 10. Clear any constraints and bounds for response r1. The weight response r1 is not to have any constraints.
- 11. Verify that there are no constraints or bounds defined for response r1.



#### Statistics to compute at each response level



×

| Delete | Descriptor | Status | Probability of Failure for Lower<br>Bound [%] | Lower Bound | Upper Bound | Probability of Failure for Upper<br>Bound [%] |  |
|--------|------------|--------|-----------------------------------------------|-------------|-------------|-----------------------------------------------|--|
|        | Search     |        | Search (5)                                    | Search      | Search      | 7 earch 8                                     |  |
|        |            | 4      | 5                                             | Batch 🔸     | Batch 🖊     | 5                                             |  |
| ×      | r1         | •      |                                               |             | ) (11       |                                               |  |
| ×      | r2         | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r3         | •      | 5 6                                           | -248.E6     | 248.E6      | 5 9                                           |  |
| ×      | r4         | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
|        |            |        |                                               |             |             |                                               |  |
|        |            |        |                                               |             |             |                                               |  |
|        | r/8        | 0      |                                               | -248 E6     | 248 F6      | 5                                             |  |
|        | 140        |        |                                               | -240.20     | 240.20      |                                               |  |
|        | r49        | 0      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r50        | 0      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| « 1    | 2 3 »      |        |                                               |             |             | 10 20 30 40 50                                |  |





3

TReset Table

#### Configure UQ Responses

#### Statistics to compute at each response level

¥

Reliabilities

| Delete | Descriptor | Status | Probability of Failure for Lower<br>Bound [%] | Lower Bound | Upper Bound | Probability of Failure for Upper<br>Bound [%] |
|--------|------------|--------|-----------------------------------------------|-------------|-------------|-----------------------------------------------|
|        | Search     | ]      | Search (3)                                    | Search      | Search      | 5 <sup>earch</sup> 6                          |
|        |            | 2      | 5                                             | Batch 🔸     | Batch 🔸     | 5                                             |
| ×      | r51        | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |
| ×      | r52        | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |
| ×      | r53        | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |
| ×      | r54        | 0      | 5                                             | -248.E6     |             | 5                                             |
| ×      | r98        | 0      | 5                                             | -248.E6     |             | 5                                             |
| ×      | r99        | 0      | 5                                             | -248.E6     | 248.E6      | 5                                             |
| ×      | r100       | 0      | 5                                             | -248.E6     | 248.E6      | 5                                             |
| « 1    | 2 3 »      |        |                                               |             |             | 10 20 30 40 50                                |



Dakota -Optimization Under Uncertainty (OUU)

- Click page 2 to view the next set of rows of the table
- 2. Set the indicated input box to 5
- 3. Click the indicated button
- 4. A maximum probability of failure of 5% has been defined for each response's lower bound
- 5. Set the indicated input box to 5
- 6. Click the indicated button
- 7. A maximum probability of failure of 5% has been defined for each response's upper bound

**T**Reset Table

#### Configure UQ Responses

#### Statistics to compute at each response level

 $\sim$ 

Reliabilities

| Delete | Descriptor | Status | Probability of Failure for Lower<br>Bound [%] | Lower Bound | Upper Bound | Probability of Failure for Upper<br>Bound [%] |  |
|--------|------------|--------|-----------------------------------------------|-------------|-------------|-----------------------------------------------|--|
|        | Search     |        | Search 3                                      | Search      | Search      | (5) earch (6)                                 |  |
|        |            | 2      | 5                                             | Batch 🔸     | Batch +     | 5                                             |  |
| ×      | r101       | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r102       | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r103       | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r104       | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r105       | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r106       | •      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |
| ×      | r107       | 0      | 5                                             | -248.E6     | 248.E6      | 5                                             |  |



| 10  | 20 | 30 | 40 | 50 |
|-----|----|----|----|----|
| (8) |    |    |    |    |

**T**Reset Table

## 7. A maximum probability of failure of 5% has been defined for each response's upper bound

4. A maximum probability of failure of 5% has been defined for each response's

Dakota -

Optimization Under

1. Click page 3 to view the next set of

2. Set the indicated input box to 5

5. Set the indicated input box to 5

Click the indicated button

Click the indicated button

Uncertainty (OUU)

rows of the table

lower bound

 Click the indicated button to view at most 10 rows in the table. Reducing the number of visible rows helps improve the performance of the web app.



Configure OUU Objective and Additional Constraints

#### + Create Constraint

## Dakota -Optimization Under Uncertainty (OUU)

- 1. Navigate to section Configure OUU Objective and Additional Constraints
- 2. Click the indicated button to include the mean of response r1 (weight) in the objective.
- 3. Ensure the scale factor is 1.0 or +1.0. A positive scale factor will minimize the response. A negative scale factor will maximize the response.
- 4. Notice that the constraints on probability of failure have been automatically created.

|                       | Objective<br>(f_obj, g1) | Constraint 1<br>(r2_pl) | Constraint 2<br>(r2_pu) |  |
|-----------------------|--------------------------|-------------------------|-------------------------|--|
| Label                 | Include Scale Factor     | Include Scale Factor    | Include Scale Factor    |  |
| r1_mean               | <b>(</b>                 | 0                       | 0                       |  |
| r1_standard_deviation |                          |                         | 0                       |  |
| r2_mean               |                          |                         | 0                       |  |
| r2_standard_deviation | O                        | 0                       | 0                       |  |
| r2_p1                 | 0                        | <b>E</b> 1.             | 0                       |  |
| r2_p2                 | O                        | 0                       | <b>(2)</b> 1.           |  |
| r3_mean               | O                        | 0                       | 0                       |  |
| r3_standard_deviation | O                        | O                       | 0                       |  |
| r3_p1                 | 0                        | •                       | 0                       |  |
| r3_p2                 | O                        | O                       | 0                       |  |
| r4_mean               |                          | 0                       | 0                       |  |
| r4_standard_deviation |                          |                         | 0                       |  |

(4)



## Uncertainty Quantification

- 1. Click Method
- 2. Mark the indicated checkbox to turn on the keyword convergence\_tolerance
- 3. Set the indicated input box to 0.01
- 4. Reminder! Ensure convergence\_tolerance is set to 0.01. This is a step that is very easy to overlook.
- 5. Mark the indicated checkbox to turn on the keyword max\_iterations
- 6. Set the indicated input box to 10
- 7. Reminder! Ensure max\_iterations is set to 10. This is a step that is very easy to overlook.
- This OUU takes approximately 50 iterations to converge with the default tolerances, but yields very little improvement in the objective after 5-10 iterations. The OUU may be terminated earlier by increasing the convergence tolerance OR by limiting the maximum number of iterations. In this exercise, both are adjusted.
- Another keyword worth considering is the keyword max\_function\_evaluations. This controls the maximum number of times the optimizer acquires statistics and gradients of the statistics. This is not to be confused with the number of times the black box function is executed to acquire responses. For example, if max\_function\_evaluations=3, the UQ is performed at most 3 times to acquire statistics or gradients. Each UQ will require a separate number of black box function runs.

Wizard Method Model Inspection 1 Method method Display Selected Keywords 。 🗹 id method OPTIM \_\_\_\_ final\_solutions ol Method (Iterative Algorithm) (Group 1) conmin mfd • ✓ model\_pointer OPTIM M constraint tolerance convergence\_tolerance 2 (4) 3 0.01 max\_function\_evaluations max\_iterations 5 (7) 6 10 scaling speculative

SOL 200 Web App - Machine Learning

Parameters

Responses

Dakota

Download

Results



## Inspection

- 1. Scroll to the navigation bar listing Wizard, Method, Model and Inspection
- 2. Click inspection
- 3. Ensure there are no error and the message reads OK

| SOL 200 Web App - Machine Learning | Parameters | Responses | Dakota      | Download          |
|------------------------------------|------------|-----------|-------------|-------------------|
| 1 Wizard Method Model Inspection   |            |           |             |                   |
| Inspection                         |            |           |             |                   |
| ♥ Initial inspection OK.           |            |           |             |                   |
|                                    |            |           | 🔳 Display S | Selected Keywords |
|                                    |            |           |             |                   |
|                                    |            |           |             |                   |
|                                    |            |           |             |                   |
|                                    |            |           |             |                   |
|                                    |            |           |             |                   |
|                                    |            |           |             |                   |
|                                    |            |           |             |                   |
|                                    |            |           |             |                   |



## Download

#### 1. Click Download

2. Click Download BDF Files





## Start MSC Nastran

A new .zip file has been downloaded

- 1. Right click on the file
- 2. Click Extract All
- 3. Click Extract on the following window
- Always extract the contents of the ZIP file to a new, empty folder.

|                   |                        |                  |                              |             | ×          |                                                |   |
|-------------------|------------------------|------------------|------------------------------|-------------|------------|------------------------------------------------|---|
| 🔾 🗢 🚺 🕨 albatross | Downloads              | ▼ 4 Sea.         | rch Downloads                |             | ٩          |                                                |   |
| Organize 🔻 🛜 Open | ✓ Share with ▼         | New folder       |                              | ≡ - 🔟       | 0          |                                                |   |
|                   | Name                   | *                | Date mod                     | dified      | Туре       |                                                |   |
| Desktop           | 1 starting files       |                  | 11/26/202                    | 20 10:57    | File folde |                                                |   |
| Downloads         | 1 starting files.zip   |                  | 11/26/202                    | 20 10:35    | Compres    |                                                |   |
| Recent Places     | nastran_working_d      | directory.zip    | 11/26/203                    | 20 11-25    | Comnre     |                                                |   |
| 🐔 OneDrive        | 1                      |                  | Open<br>Open in new w        | vindow      | Ī          |                                                |   |
| 🥞 Libraries       | _                      | $\overline{(2)}$ | Extract All                  |             |            |                                                |   |
| Documents         |                        |                  | Edit with Note               | pad++       |            |                                                |   |
| 🚽 Music           |                        |                  | Open with                    |             |            |                                                |   |
| Pictures          |                        |                  |                              |             |            |                                                |   |
| H Videos          |                        |                  | Share with<br>Restore previo | us versions | 1          |                                                |   |
| 🤣 Homegroup       |                        |                  | Send to                      |             | •          |                                                |   |
|                   |                        |                  | Cut                          |             |            |                                                |   |
| Computer          |                        |                  | Сору                         |             |            |                                                |   |
| 👊 Network         |                        |                  | Create shortcu               | t           |            |                                                |   |
| 5 A               |                        |                  | Delete                       |             |            |                                                |   |
|                   | •                      |                  | Rename                       |             |            | ſ                                              | × |
| nastran_working   | g_directory.zip Date m | odified: 11/26/2 | Properties                   | 🕞 🚹 Exti    | act Com    | pressed (Zipped) Folders                       |   |
| Compressed (zip   | ped) Folder            | Size: 112 MB =   |                              | <u> </u>    |            |                                                |   |
|                   |                        |                  |                              | Select      | a Dest     | ination and Extract Files                      |   |
|                   |                        |                  |                              | Files wi    | l be extra | acted to this folder:                          |   |
|                   |                        |                  |                              | C:\Use      | rs\albatr  | oss\Downloads\nastran_working_directory Browse |   |
|                   |                        |                  |                              | Show        | v extracte | ed files when complete                         |   |
|                   |                        |                  |                              |             |            |                                                |   |
|                   |                        |                  |                              |             |            |                                                |   |
|                   |                        |                  |                              |             |            |                                                |   |
|                   |                        |                  |                              |             |            |                                                | _ |
|                   |                        |                  |                              |             |            |                                                | _ |
|                   |                        |                  |                              |             |            |                                                |   |
|                   |                        |                  |                              |             |            |                                                |   |
|                   |                        |                  |                              |             |            |                                                |   |
|                   |                        |                  |                              |             |            | 3 Estant Conce                                 |   |
|                   |                        |                  |                              |             |            |                                                |   |


1. Navigate to the following directory

1\_starting\_files/0\_solutio
n\_files\_sol\_200\_local\_opti
mization

- 2. Open file model.f06 in Notepad++
- 3. Scroll to end of this file and find the optimal solution listed under design cycle 6. These are the optimal variable values when an optimization with deterministic responses was performed with MSC Nastran SOL 200.
- 4. Press and hold CTRL+ALT on the keyboard and use the left mouse button to select the indicated values for all 53 variables. CTRL+ALT allows for vertically selecting text.
- 5. Click the indicated button to create a new text file. This new file will be opened in a new table, e.g. new 1.
- 6. Paste the selected values to the new text file.

|                        |                                 |                         | 2230 | 2 1  | 100002 |
|------------------------|---------------------------------|-------------------------|------|------|--------|
|                        |                                 |                         | 5597 | 6    | 100006 |
|                        |                                 |                         | 5598 | 7    | 100007 |
|                        |                                 |                         | 5599 | 8    | 100008 |
|                        |                                 |                         | 5600 | 9    | 100009 |
|                        |                                 |                         | 5601 | 10   | 100010 |
|                        | $\frown$                        |                         | 5602 | 11   | 100011 |
|                        | (1)                             |                         | 5603 | 12   | 100012 |
|                        |                                 |                         | 5604 | 13   | 100013 |
| 🔿 🗸 — 🛄 ee 1. staating | Glas N. O. salution Glas and 20 | O la sal a stinuination | 5605 | 14   | 100014 |
| Starting 🖉 🖉           | _files V_solution_files_sol_20  | 0_local_optimization    | 5606 | 15   | 100015 |
| 00                     |                                 |                         | 5607 | 16   | 100016 |
| Organiza = Jacluda in  | library - Shara with -          | New folder              | 5608 | 17   | 100017 |
| organize + Include in  | indiary + Share with +          | New Torder              | 5609 | 18   | 100018 |
|                        | A.                              |                         | 5610 | 19   | 100019 |
| - Councilian           | Name                            | Т                       | 5611 | 20   | 100020 |
|                        |                                 |                         | 5612 | 21   | 100021 |
| Deskton                | 🖹 design model hdf              | N                       | 5613 | 22   | 100022 |
| версактор              | design_model.bdi                | 1.                      | 5614 | 23   | 100023 |
| Downloads              | 🖉 model.bdf                     | N                       | 5615 | 24 1 | 100024 |
| ()<br>()               |                                 |                         | 5616 | 25   | 100025 |
| 🔠 Recent Places        | 🗾 model.f06 🚺 🤈 🚬 🗕             | N                       | 5617 | 26   | 100026 |
|                        |                                 |                         | 5618 | 27   | 100027 |
|                        | _                               |                         | 5619 | 28   | 100028 |
| 🚍 Librarian            |                                 |                         | 5620 | 29 1 | 100029 |
|                        |                                 |                         | 5621 | 30 1 | 100030 |
| Documents              |                                 |                         | 5622 | 31   | 100031 |
| bocuments              |                                 |                         | 5623 | 32   | 100032 |
| 🚽 Music                |                                 |                         | 5624 | 33   | 100033 |
| -                      |                                 |                         | 5625 | 34 1 | 100034 |
| Pictures               |                                 |                         | 5626 | 35   | 100035 |
|                        |                                 |                         | 5627 | 36 1 | 100036 |
| Videos                 |                                 |                         | 5628 | 37 1 | 100037 |
|                        |                                 |                         | 5629 | 38 1 | 100038 |
|                        |                                 |                         | 5630 | 39 1 | 100039 |
|                        |                                 |                         | 5631 | 40   | 100040 |
|                        |                                 |                         | 5632 | 41   | 100041 |
|                        |                                 |                         | 5633 | 42   | 100042 |
|                        |                                 |                         | 5634 | 43   | 100043 |
|                        |                                 |                         | 5635 | 44   | 100044 |
|                        |                                 |                         | 5636 | 45   | 100045 |
|                        |                                 |                         | 5637 | 46   | 100046 |
|                        |                                 |                         | 5638 | 47   | 100047 |
|                        |                                 |                         | 5639 | 48   | 100048 |
|                        |                                 |                         | 5640 | 49   | 100049 |
|                        |                                 |                         | 5641 | 50   | 100050 |

(5)

| 📔 *new 1 -  | - Notepad+ | ++         |               |                 |                 |                |             |                          |              |
|-------------|------------|------------|---------------|-----------------|-----------------|----------------|-------------|--------------------------|--------------|
| File Edit   | Search     | View E     | Encoding La   | nguage Settings | Tools Macro Run | Plugins Window | ?           |                          | + <b>v</b> × |
|             | 6          | ī 👌        | * • •         | ) C # ½         | 🔍 🔍 २ 🔂         | 击 1 🎼 🐺 💹      | T 🔊 🗈       |                          | 🔤 合 存 👋      |
| model f00   |            |            |               |                 |                 |                | 4 🔲 now 1 🕅 | 2                        |              |
|             | • 🗠 🔤      |            | DU TD         | I INDEI         |                 | -              |             | 0.05475.04               |              |
| 5590        | DV. 1      |            | DV. 1D.       | LABEL           | • :             | ^              |             | 8.064/E-04<br>1 2097F-03 | Â            |
| 5592        |            | 1          | 100001        | X1              | 8.0647E-04 :    |                | 3           | 1.6129E-03               |              |
| 5593        |            | 2          | 100002        | X2              | 1.2097E-03 :    | $\frown$       | 4           | 1.6129E-03               |              |
| 5594        |            | 3          | 100003        | X3              | 1.6129E-03 :    | (4)            | 5           | 1.6129E-03               | (6)          |
| 5595        |            | 4          | 100004        | X4              | 1.6129E-03 :    | $\cup$         | 6           | 1.6129E-03               |              |
| 5596        |            | 5 1        | 100005        | X5              | 1.6129E-03 :    |                | 7           | 1.6129E-03               |              |
| 5597        |            | 6          | 100006        | X6              | 1.6129E-03 :    |                | 8           | 1.2097E-03<br>9.0647E-04 |              |
| 5599        |            | 8 1        | 100007        | 1 X8            | 1.2097E-03      |                | 10          | 4.0324E-04               |              |
| 5600        |            | 9 1        | 100009        | 1 X9            | 8.0647E-04 :    |                | 11          | 5.7026E-04               |              |
| 5601        |            | 10         | 100010        | X10             | 4.0324E-04 :    |                | 12          | 4.0324E-04               |              |
| 5602        |            | 11         | 100011        | X11             | 5.7026E-04 :    |                | 13          | 8.0647E-04               |              |
| 5603        |            | 12         | 100012        | X12             | 4.0324E-04 :    |                | 14          | 1.6129E-03               |              |
| 5604        |            | 13         | 100013        | X13             | 8.0647E-04 :    |                | 15          | 1.2097E-03               | =            |
| 5605        |            | 14         | 100014        | X14             | 1.6129E-03 :    |                | 16          | 1.6129E-03               | -            |
| 5600        |            | 16 1       | 100015        | 1 X15           | 1.2097E-03 :    |                | 19          | 1.6129E-03               |              |
| 5608        |            | 17 1       | 100017        | X17             | 1.6129E-03      |                | 19          | 1.6129E-03               |              |
| 5609        |            | 18 1       | 100018        | 1 X18           | 1.6129E-03      |                | 20          | 1.6129E-03               |              |
| 5610        |            | 19         | 100019        | X19             | 1.6129E-03 :    |                | 21          | 1.6129E-03               |              |
| 5611        |            | 20         | 100020        | X20             | 1.6129E-03 :    |                | 22          | 1.6129E-03               |              |
| 5612        |            | 21         | 100021        | X21             | 1.6129E-03 :    |                | 23          | 1.6129E-03               |              |
| 5613        |            | 22         | 100022        | X22             | 1.6129E-03 :    |                | 24          | 8.0647E-04               |              |
| 5614        |            | 23         | 100023        | X23             | 1.6129E-03 :    |                | 25          | 1.2097E-03               |              |
| 5615        |            | 24         | 100024        | X24             | 8.0647E-04 :    |                | 26          | 4.0324E-04               |              |
| 5616        |            | 25 1       | 100025        | X25             | 1.2097E-03 :    |                | 27          | 4.0324E-04               |              |
| 5618        |            | 27 1       | 100028        | 1 827           | 4.0324E-04      |                | 20          | 5.7026E-04               |              |
| 5619        |            | 28 1       | 100028        | 1 X28           | 1.0000E-05 :    |                | 30          | 5.7026E-04               |              |
| 5620        |            | 29         | 100029        | X29             | 5.7026E-04 :    |                | 31          | 1.0000E-05               |              |
| 5621        |            | 30         | 100030        | X30             | 5.7026E-04 :    |                | 32          | 4.0324E-04               |              |
| 5622        |            | 31         | 100031        | X31             | 1.0000E-05 :    |                | 33          | 5.7026E-04               |              |
| 5623        |            | 32         | 100032        | X32             | 4.0324E-04 :    |                | 34          | 2.8513E-04               |              |
| 5624        |            | 33         | 100033        | X33             | 5.7026E-04 :    |                | 35          | 1.0000E-05               |              |
| 5625        |            | 34         | 100034        | X34             | 2.8513E-04 :    |                | 36          | 1.0000E-05               |              |
| 5627        |            | 35 1       | 100035        | 1 X35           | 1.0000E-05      |                | 38          | 2 8513E-04               |              |
| 5628        |            | 37 1       | 100038        | 1 X37           | 1.0000E-05      |                | 39          | 4.0324E-04               |              |
| 5629        |            | 38 1       | 100038        | I X38           | 2.8513E-04 :    |                | 40          | 5.7026E-04               |              |
| 5630        |            | 39         | 100039        | X39             | 4.0324E-04 :    |                | 41          | 1.0000E-05               |              |
| 5631        |            | 40 I       | 100040        | I X40           | 5.7026E-04 :    |                | 42          | 1.0000E-05               |              |
| 5632        |            | 41         | 100041        | X41             | 1.0000E-05 :    |                | 43          | 4.0324E-04               |              |
| 5633        |            | 42         | 100042        | X42             | 1.0000E-05 :    |                | 44          | 5.7026E-04               |              |
| 5634        |            | 43         | 100043        | X43             | 4.0324E-04 :    |                | 45          | 5.7026E-04               |              |
| 5635        |            | 44         | 100044        | X44             | 5.7026E-04 :    |                | 46          | 1.0000E-05               |              |
| 5637        |            | 46         | 100045        | 1 X46           | 1.0000E-04      |                | 48          | 2.8513E-04               |              |
| 5638        |            | 47         | 100047        | X47             | 2.8513E-04      |                | 49          | 2.8513E-04               |              |
| 5639        |            | 48         | 100048        | X48             | 2.8513E-04 :    |                | 50          | 1.0000E-05               |              |
| 5640        |            | 49         | 100049        | X49             | 2.8513E-04 :    |                | 51          | 2.8513E-04               |              |
| 5641        |            | 50 I       | 100050        | I X50           | 1.0000E-05 :    |                | 52          | 4.0324E-04               |              |
| 5642        |            | 51         | 100051        | X51             | 2.8513E-04 :    |                | 53          | 5.7026E-04               |              |
| 5643        |            | 52         | 100052        | X52             | 4.0324E-04 :    |                |             |                          |              |
| 5644        |            | 53         | 100053        | X53             | 5.7026E-04 :    |                |             |                          |              |
|             |            | 1          |               |                 |                 | •              | •           |                          | -            |
| Normal text | file       | ength : 74 | 40 lines : 53 | Ln              | :10 Col:4 Pos:1 | 30             | Windows     | (CR LF) UTF-8            | INS          |
|             |            |            |               |                 |                 |                |             |                          |              |



\*new 1 - Notepad++

🗎 new 1 🗵

Normal text file

File Edit Search View Encoding Language

8.0647E-04

- 1. In the new text file, select all the values with the mouse or with CTRL+A
- 2. Press CTRL+J to join all the lines

| .2097E-03 | $\left( 1 \right)$ |              |                |            |                       |             |             |          |      |           |         |         |           |   |
|-----------|--------------------|--------------|----------------|------------|-----------------------|-------------|-------------|----------|------|-----------|---------|---------|-----------|---|
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .2097E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0647E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0324E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .7026E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0324E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0647E-04 |                    | 📔 *new 1 - I | Votepad++      |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    | File Edit    | Search View Er | ncoding La | anguage Settings      | Tools Macro | Run Plugins | Window ? |      |           |         |         |           |   |
| .2097E-03 |                    |              |                | <u> </u>   | ) <b>&gt; c</b>   # % |             |             | = 🔲 🖪 🙆  |      |           |         | 1 = = 5 |           | 6 |
| .6129E-03 |                    | 😑 new 🛛 🔀    |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    | 1            | 8.0647E-       | 04         | 1.2097E-0             | 3 1.61      | 29E-03      | 1.6129E  | C-03 | 1.6129E-0 | 3 1.612 | 9E-03   | 1.6129E-0 |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           | J |
| .6129E-03 |                    |              | $\bigcirc$     |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .6129E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0647E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .2097E-03 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0324E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0324E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0000E-05 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .7026E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .7026E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0000E-05 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0324E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .7026E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .8513E-04 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
| .0000E-05 |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
|           |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
|           |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |
|           |                    |              |                |            |                       |             |             |          |      |           |         |         |           |   |



1. Add the keyword *initial\_point* to the beginning of the line and include a space. Example:

initial\_point 8.0647E-04 [...]

- Open file nastran\_working\_directory/workspace\_ d/study\_d.in
- 3. Search for the keyword block with id\_variables='OPTIM\_V'
- Copy the new line and replace the old line found in study\_d.in
- 5. Click save
- 6. Ensure the save icon is blue, not red. A blue color indicates the file has been saved. A red icon indicates the file has not been saved.

The initial values of the variables has been updated for all 53 OUU variables.





# Start Desktop App

- 1. Inside of the new folder, double click on Start Desktop App
- Click Open, Run or Allow Access on any subsequent windows
- 3. The Desktop App will now start
- One can run the Nastran job on a remote machine as follows: 1) Copy the BDF files and the INCLUDE files to a remote machine. 2) Run the MSC Nastran job on the remote machine. 3) After completion, copy the BDF, F06, LOG, H5 files to the local machine. 4) Click "Start Desktop App" to display the results.

#### **Using Linux?**

Follow these instructions: 1) Open Terminal 2) Navigate to the nastran\_working\_directory cd ./nastran working directory 3) Use this command to start the process ./Start MSC Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x ./nastran\_working\_directory



Questions? Email: christian@ the-engineering-lab.com



echnology Partne

Open

x

Cancel

# Status

 While MSC Nastran is running, a status page will show the current state of MSC Nastran

#### SOL 200 Web App - Status

Status

| Name      | Status of Job | Design Cycle | RUN TERMINATED DUE TO |
|-----------|---------------|--------------|-----------------------|
| model.bdf | Running       | None         |                       |

Questions? Email: christian@ the-engineering-lab.com



MSC Nastran

n Python

# Long OUU

Since this OUU has over 50 variables, the OUU is expected to take a long time and may require between 100 to 500 FEA runs.

During OUU, the progress may be inspected as follows.

- Open file dakota\_console\_output.tmp in Notepad++
- Press CTRL+F on the keyboard to open the Find window
- 3. Search for ITER
- 4. Click Find All in Current Document
- 5. Information regarding the OUU progress is displayed
- Since the convergence tolerance was reached, the OUU terminates. If max\_iterations was set to 3, the OUU would have terminated after iteration 3. In this case, max\_iterations was set to 10. The termination criteria for convergence tolerance was reached first before the maximum number of iterations.





# OUU Completion

1. The OUU is complete when the indicated web apps are opened.



- Select the window or tab that displays the Local Optimization Results web app. This web app displays the OUU history for the objective, constraints and variables.
- Note that the start of the optimization, the normalized constraint is very high and positive, indicating the initial design was infeasible.
- 3. At the end of the optimization, the normalized constraint is negative. Negative or near zero constraint values indicate a feasible design. This optimization has terminated at a feasible design.

#### Objective





- 1. Navigate to section Design Variables
- 2. Click the indicated button to display at most 200 rows in the table
- B. Click Display All
- 4. The change of all the design variables during the OUU are displayed





- 1. The results of the OUU are contained in the workspace\_d directory
- 2. If there were any errors during the OUU, the errors are typically stored in the file dakota.err. Warnings in this file may be ignored. Notice in this example, the size of the file is OKB, indicating the file is empty of error and warning messages.
- 3. The output of Dakota is contained in file dakota.out. Open this file in a text editor.





- Once file dakota.out is opened in a text editor, scroll to the very end of the file and you will find the results of the OUU.
- 2. The optimal mean values for the variables are listed. Only a partial set of the results are displayed.
- 3. The objective at the optimum is displayed. Recall he objective was to minimize the mean of r1, i.e. minimize the mean weight.
- 4. This exercise was configured to constrain probabilities of failure, but since we configured the Dakota input file to internally constrain equivalent reliability values, the reported constraint values are reliability index values.
- 5. During the OUU, the optimizer has acquired response or gradients for 284 designs, where a design is a different set of variable values. 282 of these evaluations were unique, while 2 evaluations were non-unique. MSC Nastran was run 282 times at only the unique designs. Each evaluation was to acquire responses or gradients.
- Lastly, the following initial configurations were made to reduce the cost of OUU. The total wall clock time was 1262.77 seconds (~21 minutes)
  - 1. Local reliability with MVFOSM was used.
  - 2. A SOL 200 optimization was performed to determine ideal initial values for the OUU variables.
  - 3. Internally, reliabilities were constrained instead of probabilities.



<<<< Best evaluation ID not available

(This warning may occur when the best iterate is comprised of multiple interface evaluations or arises from a composite, surrogate, or transformation model.)



Although initial configurations were set to expedite the optimization, more than 100 MSC Nastran runs were performed during the OUU, which some might say is still costly.

OUU repeats the following 2 steps until convergence.

- 1. Perform an uncertainty quantification at xi
- 2. The optimizer uses the UQ responses to find the next best xi

The uncertainty quantification is expedited by using the MVFOSM method, which depends on responses ri and gradients dri/dxi. MSC Nastran is executed to output both ri and dri/dxi.

The optimizer must then perform its search for the next best xi while considering statistical responses such as means, standard deviations and probabilities, e.g. ri\_mean, ri\_standard\_deviation, ri\_probability\_1, etc. Analytic gradients for statistical responses (dri\_mean/dxi, dri\_standard\_deviation/dxi, etc.) are needed by the optimizer but are not immediately not available, so Dakota relies on numerical gradients or the finite difference method to determine the necessary gradients. The determination of numerical gradients is what contributes to the large number of black box function evaluations or MSC Nastran runs.

L. There are alternative UQ and OUU methods, but many of these methods are subject to the curse of dimensionality and may require thousands of black box function runs to perform the OUU. Ultimately, many of these alternative methods may be limited to OUU problems involving 1-10 variables.

```
<<<< Function evaluation summary (UQ I): 284 total (282 new, 2 duplicate)
<<<<< Best parameters
                               =
                     1.3179002125e-03 x1 mean
                     1.7973456563e-03 x2_mean
                     2.2591465096e-03 x3 mean
                      [...]
                     7.8231184718e-04 x51 mean
                      9.1467021248e-04 x52 mean
                     1.0674418472e-03 x53 mean
<<<<< Best objective function =
                     1.8957040000e+02
<<<<< Best constraint values
                            =
                     -1.1250630719e+01
                      5.9790298704e+00
                     -7.0873346063e+00
                     1.4276717017e+01
                    -1.7175574977e+01
[...]
                     -1.8613891157e+00
                      6.1311565463e+00
<<<<< Best evaluation ID not available
(This warning may occur when the best iterate is comprised of multiple interface
evaluations or arises from a composite, surrogate, or transformation model.)
<<<<< Iterator conmin mfd completed.
<<<<< Environment execution completed.
DAKOTA execution time in seconds:
            = 3.19415 [parent = 3.19433, child = -0.000179]
 Total CPU
 Total wall clock = 1262.77
```



# Discussion of Final Probabilities of Failure

The same results discussed on the previous page may be inspected in the web app.

Constraints

- 1. Select the Dakota Results tab or window
- 2. Click OUU Results
- 3. The values of the constraints are visible
- 4. Each constraint has an associated icon indicating if the constraint is satisfied or violated. Upon inspection, all the individual constraints are satisfied.
- Alternatively, the indicated icon represents if all the design constraints are satisfied or violated. In this case, the design feasible, indicating all the constraints are satisfied.

| Status          | × Dakota Results        | × Local         | Optimization | ×   O HDF5 Explorer | ×   + |  |
|-----------------|-------------------------|-----------------|--------------|---------------------|-------|--|
| SOL 200 Web App | 1<br>o - Dakota Results | Upload OUT File | Tables       | OUU Results         |       |  |
| OUU Results     |                         |                 |              |                     |       |  |
| Objective       |                         |                 |              |                     |       |  |
| Descriptor      |                         | Value           |              |                     |       |  |
| f_obj           |                         | 1.8957040000e   | e+02         |                     |       |  |

|             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                             | 5<br>Feasible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lower Bound | Upper Bound                                                                                                                         | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                | Constraint Satisfied        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -inf        | -1.644854                                                                                                                           | -1.1250630719e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                              | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.644854    | inf                                                                                                                                 | 5.9790298704e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -inf        | -1.644854                                                                                                                           | -7.0873346063e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.644854    | inf                                                                                                                                 | 1.4276717017e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -inf        | -1.644854                                                                                                                           | -1.7175574977e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.644854    | inf                                                                                                                                 | 8.1389891037e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -inf        | -1.644854                                                                                                                           | -5.6075327977e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.644854    | inf                                                                                                                                 | 1.4644118467e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -inf        | -1.644854                                                                                                                           | -1.2956481235e+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.644854    | inf                                                                                                                                 | 3.9198953937e+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                | 0                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Lower Bound<br>-inf<br>1.644854<br>-inf<br>1.644854<br>-inf<br>1.644854<br>-inf<br>1.644854<br>-inf<br>1.644854<br>-inf<br>1.644854 | Lower Bound         Upper Bound           -inf         -1.644854           1.644854         inf           -inf         -1.644854           -inf         -1.644854           1.644854         inf           -inf         -1.644854           1.644854         inf           -inf         -1.644854           1.644854         inf           1.644854         inf           -inf         -1.644854           1.644854         inf           1.644854         inf           1.644854         inf           1.644854         inf | Lower BoundUpper BoundValueInf1.6448541.1250630719e+011.644854inf5.9790298704e+001.644854inf5.9790298704e+001.644854inf1.0873346063e+001.644854inf1.4276717017e+011.644854inf1.4276717017e+011.644854inf5.6075327977e+001.644854inf1.644118467e+011.644854inf1.4644118467e+011.644854inf1.2956481235e+011.644854inf1.2956481235e+011.644854inf3.9198953937e+00 | Lower BoundUpper BoundValue | Lower Bound       Upper Bound       Value       Constraint Satisfied and the set of t |



Constraints

TReset Table III Display Additional Columns

1

L Display All as Probability of Failure

#### 📀 Feasible

# Discussion of Final Probabilities of Failure

- 1. Click Display Additional Columns
- 2. The constraint values include probabilities of survival  $(p_s)$  and failure  $(p_f)$ . The goal is to interpret all the values as probabilities of failure.
- 3. Click Display All as Probability of Failure
- 4. All  $p_s$  values has been updated to equivalent  $p_f$  values. This is done by taking the complement:

 $p_f$  = 1.0 -  $p_s$  .

| Descriptor                                                                | Lower<br>Bound                                                                | Upper<br>Bound                                                 | Value                                                                                                                                                                           | pf/ps                                      | Description                                          | Probability                                   | Reliability Index                                                         | Constraint Satisfie<br>≑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Search                                                                    |                                                                               |                                                                |                                                                                                                                                                                 |                                            | 2                                                    |                                               |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| :2_pl                                                                     | -inf                                                                          | -1.644854                                                      | -1.1250630719e+01                                                                                                                                                               | ps                                         | P(-2.4800e+8 < r2)                                   | 1.0000e+0                                     | -1.1250630719e+01                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2_pu                                                                      | 1.644854                                                                      | inf                                                            | 5.9790298704e+00                                                                                                                                                                | p <sub>f</sub>                             | P(2.4800e+8 < r2)                                    | 1.1224e-9                                     | 5.9790298704e+00                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -3_pl                                                                     | -inf                                                                          | -1.644854                                                      | -7.0873346063e+00                                                                                                                                                               | ps                                         | P(-2.4800e+8 < r3)                                   | 1.0000e+0                                     | -7.0873346063e+00                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -3_pu                                                                     | 1.644854                                                                      | inf                                                            | 1.4276717017e+01                                                                                                                                                                | Pf                                         | P(2.4800e+8 < r3)                                    | 0.0000e+0                                     | 1.4276717017e+01                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 pl                                                                      | -inf                                                                          | -1.644854                                                      | -1.7175574977e+01                                                                                                                                                               | p <sub>s</sub>                             | P(-2.4800e+8 < r4)                                   | 1.0000e+0                                     | -1.7175574977e+01                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| onstraints<br>Reset Table                                                 | isplay Additional (                                                           | Columns                                                        | 3<br>Display All as Probabil                                                                                                                                                    | ity of Fa                                  | ailure                                               |                                               |                                                                           | Fear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| onstraints<br>▼ Reset Table III D<br>Descriptor                           | isplay Additional (<br>Lower<br>Bound                                         | Columns Li<br>Upper<br>Bound                                   | 3<br>Display All as Probabil<br>Value                                                                                                                                           | ity of Fa                                  | ailure<br>Description                                | Probability                                   | Reliability Index                                                         | ⊘ Fea<br>Constraint Satisf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| onstraints<br>▼ Reset Table<br>Descriptor<br>Search                       | isplay Additional (<br>Lower<br>Bound                                         | Columns<br>Upper<br>Bound                                      | 3<br>Display All as Probabil<br>Value                                                                                                                                           | ity of Fa                                  | ailure<br>Description                                | Probability                                   | Reliability Index                                                         | ⊘ Fea<br>Constraint Satisf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| onstraints<br>▼ Reset Table III D<br>Descriptor<br>Search<br>2_pl         | isplay Additional (<br>Lower<br>Bound<br>-inf                                 | Columns<br>Upper<br>Bound<br>-1.644854                         | 3<br>Display All as Probabil<br>Value<br>-1.1250630719e+01                                                                                                                      | ity of Fa                                  | Description<br>(4)<br>P(r2 < -2.4800e+8)             | P robability                                  | Reliability Index<br>-inf                                                 | ♥ Fea<br>Constraint Satisf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| onstraints<br>▼ Reset Table III D<br>Descriptor<br>Search<br>2_pl<br>2_pu | isplay Additional (<br>Lower<br>Bound<br>-inf<br>1.644854                     | Columns Upper<br>Bound<br>-1.644854<br>inf                     | 3<br>Display All as Probabil<br>Value<br>-1.1250630719e+01<br>5.9790298704e+00                                                                                                  | ity of Fa<br>pf/ps<br>Pf<br>Pf             | Description           4           P(r2 < -2.4800e+8) | Probability<br>0.0000<br>1.1224e-9            | Reliability Index<br>-inf<br>5.9790298704e+00                             | ♥ Fea Constraint Satisf ♥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| onstraints<br>▼ Reset Table                                               | isplay Additional (<br>Lower<br>Bound<br>-inf<br>1.644854<br>-inf             | Columns<br>Upper<br>Bound<br>-1.644854<br>inf<br>-1.644854     | 3<br>Display All as Probabil<br>Value<br>-1.1250630719e+01<br>5.9790298704e+00<br>-7.0873346063e+00                                                                             | ity of Fa<br>pf/ps<br>Pf<br>Pf<br>Pf       | Description           4           P(r2 < -2.4800e+8) | P obability<br>0.0000<br>1.1224e-9<br>0.0000  | Reliability Index<br>-inf<br>5.9790298704e+00<br>-inf                     | <ul> <li>♥ Fea</li> <li>Constraint Satisf</li> <li>♥</li> <li>♥&lt;</li></ul> |
| onstraints<br>▼ Reset Table                                               | isplay Additional (<br>Lower<br>Bound<br>-inf<br>1.644854<br>-inf<br>1.644854 | Columns Upper<br>Bound<br>-1.644854<br>inf<br>-1.644854<br>inf | <ul> <li>3</li> <li>Display All as Probabil</li> <li>Value</li> <li>-1.1250630719e+01</li> <li>5.9790298704e+00</li> <li>-7.0873346063e+00</li> <li>1.4276717017e+01</li> </ul> | ity of Fa<br>pf/ps<br>Pf<br>Pf<br>Pf<br>Pf | Description         4         P(r2 < -2.4800e+8)     | Probability 0.0000 1.1224e-9 0.0000 0.0000e+0 | Reliability Index<br>-inf<br>5.9790298704e+00<br>-inf<br>1.4276717017e+01 | <ul> <li>Fea</li> <li>Constraint Satisf</li> <li>O</li> <li>O</li></ul>       |



# Discussion of Final Probabilities of Failure

There is a goal to identify the most active or most violated constraints. Such constraints are marked with an asterisk (\*).

- 1. In the indicated search bar, search for character \*
- 2. The search reveals the following constraints are the most active or most violated
- 3. The probabilities of failure are 4.73%, which are very close to the limit of 5% specified in this exercise

| Status                      |                   | × Dakot              | a Results      | × Local Op              | timizati       | ion ×   HDf        | 5 Explorer  | ×   +             |                                                  |
|-----------------------------|-------------------|----------------------|----------------|-------------------------|----------------|--------------------|-------------|-------------------|--------------------------------------------------|
| SOL 200 We                  | b App -           | Dakota Resi          | ults Uplo      | ad OUT File             | Tables         | OUU Results        |             |                   |                                                  |
| OUU Resu                    | lts               |                      |                |                         |                |                    |             |                   |                                                  |
| Objective                   |                   |                      |                |                         |                |                    |             |                   |                                                  |
| Descriptor                  |                   |                      |                | Value                   |                |                    |             |                   |                                                  |
| f_obj                       |                   |                      |                | 1.8957040000e+02        | 2              |                    |             |                   |                                                  |
| Constraints<br>TReset Table | <b>III</b> Displa | ay Additional Column | ns 📕 🖡 Display | / All as Probability of | Failure        |                    |             |                   | Feasible                                         |
| Descrip                     | otor              | Lower Bound          | Upper Bound    | Value                   | pf/ps          | Description        | Probability | Reliability Index | Constraint Satisfied $\ensuremath{\updownarrow}$ |
| * (1)                       |                   |                      |                |                         |                |                    | 3           |                   |                                                  |
| r55_pu *                    | (2)               | 1.644854             | inf            | 1.6716146649e+00        | p <sub>f</sub> | P(2.4800e+8 < r55) | 4.7300e-2   | 1.6716146649e+00  | 0                                                |
| r63_pu *                    |                   | 1.644854             | inf            | 1.6716146649e+00        | p <sub>f</sub> | P(2.4800e+8 < r63) | 4.7300e-2   | 1.6716146649e+00  | 0                                                |
| r67_pu *                    |                   | 1.644854             | inf            | 1.6716146649e+00        | p <sub>f</sub> | P(2.4800e+8 < r67) | 4.7300e-2   | 1.6716146649e+00  | 0                                                |
| r78_pu *                    |                   | 1.644854             | inf            | 1.6716146649e+00        | p <sub>f</sub> | P(2.4800e+8 < r78) | 4.7300e-2   | 1.6716146649e+00  | 0                                                |

\* This constraint is the most active or most violated



# Discussion of Final Probabilities of Failure

The table on the previous page displayed separate probabilities of failure for the bounds, i.e. P(a < X) and P(X < b). There is a desire to know the combined probability  $P(a < X \le b)$ . The probability for  $P(a < X \le b)$  is available by following these steps.

- Navigate to section Constraints P(a < X ≤ b)
- 2. In the indicated search bar, search for character \*
- 3. The search reveals responses that have the highest probability of failure.
- 4. The Description column displays the probabilities now consider both the lower and upper bound, i.e.  $P(a < X \le b)$ .
- 5. The probability of survival  $P(a < X \le b)$  is displayed in column ps.
- The probability of survival P(a > X OR b < X) is displayed in column pf.

The highest probability of failure is 4.73%.







| Descriptor         | Descriptio                | on | ps       | pf      |  |
|--------------------|---------------------------|----|----------|---------|--|
| * (2)              | 4                         |    | 5        | 6       |  |
| 55 *               | P(-248.E6 < r55 ≤ 248.E6) |    | 95.2700% | 4.7300% |  |
| <sup>63 *</sup>    | P(-248.E6 < r63 ≤ 248.E6) |    | 95.2700% | 4.7300% |  |
| ·67 * <sup>3</sup> | P(-248.E6 < r67 ≤ 248.E6) |    | 95.2700% | 4.7300% |  |
| 78 *               | P(-248.E6 < r78 ≤ 248.E6) |    | 95.2700% | 4.7300% |  |

\* This response has the highest probability of failure



# Comparison of Approximate and Actual $p_f$

- In part A, the OUU results are based on approximated statistics.
- In part B, an UQ is configured by using the sampling method with an LHS of size 200 . These resulting statistics are deemed the actual statistics. The approximated and actual statistics are compared and a conclusion is determined if the final design satisfies the constraints on probabilities of failure.

| Response                       | Part A - OUU<br>Approximated Reliability Index<br>(Equivalent Probability of<br>Failure) | Part B - UQ Generated<br>(Actual Probability of failure) |
|--------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Comments                       | The OUU considered and reported reliability indices                                      | These are the probabilities after an LHS of size 200     |
| Maximum Probability of Failure | 1.6716146649e+00 (4.73%)<br>for responses r55_pu, r63_pu,                                | (5%)<br>for response r98_pl                              |



# Part B – Verification of OUU Solution



# Motivation

Part A - An OUU was performed using reliability methods. Specifically, the MVFOSM was used to approximate the tail probabilities (probabilities of failure). These are termed the approximate tail probabilities or approximate probabilities of failure.

Part B - An LHS of size 200 (200 MSC Nastran runs) is evaluated and the tail probabilities are calculated. These tail probabilities are deemed the actual tail probabilities or actual probabilities of failure.

The approximated and actual probabilities of failure are compared to confirm the OUU solution is valid.



# Uncertainty Quantification

- Return to the Machine Learning web app
- 2. Click Dakota
- 3. Navigate to section Wizard
- 4. Click Wizard
- 5. Set UQ Method to Sampling
- 6. Set the OUU Approach to Nested OUU [Formulation 1]

The goal is to perform an uncertainty quantification and run the optimization procedure only to compute the constraint values, i.e. probabilities of failure. Later on, max\_function\_evaluations is set to 1 to allow the optimization routine to calculate only constraint values and terminate with zero iterations.

|                     |              | •          |          | 2           |               |                                               |                            |
|---------------------|--------------|------------|----------|-------------|---------------|-----------------------------------------------|----------------------------|
| (3)<br>Wizard       | Method Model | Inspection |          |             |               |                                               |                            |
| Wizard <sup>(</sup> | 4            |            |          |             |               |                                               |                            |
| LIQ Method          |              |            |          | proach      | • UQ<br>• OUI | - Uncertainty Quantit<br>U - Optimization Und | fication<br>er Uncertainty |
|                     | 5            |            | Nester   | d OUU [Forn | nulation 11   | 6                                             | ~                          |
|                     | 5            |            | ✓ Nested | d OUU [Forn | nulation 1] ( | 6                                             |                            |



# Uncertainty Quantification

- 1. Navigate to section Configure OUU Variables
- 2. Take the optimal variable values after the OUU and replace the old initial values for the OUU variables.

The idea is to determine the new probabilities of failure at the optimal variable values.

There are 53 variables to update, but this step only updates 4 variables. Later on, all the variables are updated using a faster procedure.



Configure OUU Variables (1)



#### Dakota -Uncertainty Quantification (UQ)

- 1. Navigate to section Configure OUU Constraints
- 2. Set Statistics to compute at each response level to Probabilities
- 3. Set the number of visible rows to 50
- 4. Set the indicated input box to -310.E6
- 5. Click the indicated button
- 6. The lower bound for each visible response has been updated
- 7. Set the indicated input box to 310.E6
- 8. Click the indicated button
- 9. The upper bound for each visible response has been updated
- 10. Clear any constraints and bounds for response r1. The weight response r1 is not to have any constraints.
- 11. Verify that there are no constraints or bounds defined for response r1.

#### Configure OUU Constraints 1

Statistics to compute at each response level

| Probabilities 2 | ~ |
|-----------------|---|
|-----------------|---|

| Delete | Descriptor | Status | Probability of Failure for<br>Lower Bound [%] | Lower Bound | Upper Bound | Probability of Failure for<br>Upper Bound [%]              |  |  |  |  |
|--------|------------|--------|-----------------------------------------------|-------------|-------------|------------------------------------------------------------|--|--|--|--|
|        | Search     |        | Search                                        | Se (4) (5)  | Search 7 8  | Search                                                     |  |  |  |  |
|        |            |        | 5                                             | -310.E6 +   | 310.E6      | 5                                                          |  |  |  |  |
| ×      | r1         | •      |                                               | (1          | 0 11        |                                                            |  |  |  |  |
| ×      | r2         | •      | 5                                             | -310.E6     | 310.E6      | 5                                                          |  |  |  |  |
| ×      | r3         | •      | 5                                             | -310.E6     | 310.E6      | 5                                                          |  |  |  |  |
| ×      | r4         | •      | 5                                             | -310.E6     | 310.E6      | 5                                                          |  |  |  |  |
|        |            |        |                                               | 6           | 9           |                                                            |  |  |  |  |
| ×      | r48        | 0      | 5                                             | -310.E6     | 310.E6      | 5                                                          |  |  |  |  |
| ×      | r49        | 0      | 5                                             | -310.E6     | 5           |                                                            |  |  |  |  |
| ×      | r50        | 0      | 5                                             | -310.E6     | 310.E6      | 5                                                          |  |  |  |  |
| « 1    | 2 3 »      |        |                                               |             | [           | 3           10         20         30         40         50 |  |  |  |  |



#### Configure OUU Constraints

Statistics to compute at each response level

| Delete | Descriptor | Status  | Probability of Failure for<br>Lower Bound [%] | Lower Bound | Upper Bound | Probability of Failure for<br>Upper Bound [%] |  |  |  |  |  |
|--------|------------|---------|-----------------------------------------------|-------------|-------------|-----------------------------------------------|--|--|--|--|--|
|        | Search     |         | Search                                        | Sigh 3      | Sector 6    | Search                                        |  |  |  |  |  |
|        |            |         | 5                                             | -310.E6     | 310.E6      | 5                                             |  |  |  |  |  |
| ×      | r51        | •       | 5                                             | -310.E6     | 310.E6      | 5                                             |  |  |  |  |  |
| ×      | r52        | 0       | 5                                             | -310.E6     | 310.E6      | 5                                             |  |  |  |  |  |
| ×      | r53        | r53 📀 5 |                                               | -310.E6     | 310.E6      | 5                                             |  |  |  |  |  |
|        |            |         |                                               | 4           | 7           |                                               |  |  |  |  |  |
| ×      | r98        | 0       | 5                                             | -310.E6     | 310.E6      | 5<br>5<br>5                                   |  |  |  |  |  |
| ×      | r99        | 0       | 5                                             | -310.E6     | 310.E6      |                                               |  |  |  |  |  |
|        | r100       | 0       | 5                                             | -310.E6     | 310.E6      |                                               |  |  |  |  |  |

Dakota -Uncertainty Quantification (UQ)

- 1. Click page 2 to view the next set of rows of the table
- 2. Set the indicated input box to -310.E6
- 3. Click the indicated button
- 4. The lower bound for each visible response has been updated
- 5. Set the indicated input box to 310.E6
- 6. Click the indicated button
- 7. The upper bound for each visible response has been updated



#### Configure OUU Constraints

Probabilities

Statistics to compute at each response level

×

#### Dakota -Uncertainty Quantification (UQ)

- 1. Click page 3 to view the next set of rows of the table
- 2. Set the indicated input box to -310.E6
- B. Click the indicated button
- 4. The lower bound for each visible response has been updated
- 5. Set the indicated input box to 310.E6
- 6. Click the indicated button
- 7. The upper bound for each visible response has been updated
- 8. Click the indicated button to view at most 10 rows in the table. Reducing the number of visible rows helps improve the performance of the web app.

| Delete | Descriptor | Status | Probability of Failure for<br>Lower Bound [%] | Lower Bound      | Upper Bound | Probability of Failure for<br>Upper Bound [%] |  |  |
|--------|------------|--------|-----------------------------------------------|------------------|-------------|-----------------------------------------------|--|--|
|        | Search     |        | Search                                        | Search (3)       | Search (6)  | Search                                        |  |  |
|        |            |        | 5                                             | -310.E6 <b>+</b> | 310.E6      | 5                                             |  |  |
| ×      | r101       | 0      | 5                                             | -310.E6          | 310.E6      | 5                                             |  |  |
| ×      | r102       | 0      | 5                                             | -310.E6          | 310.E6      | 5                                             |  |  |
| ×      | r103       | 0      | 5                                             | -310.E6          | 310.E6      | 5                                             |  |  |
| ×      | r104       | 0      | 5                                             | -310.E6          | 310.E6      | 5                                             |  |  |
| ×      | r105       | 0      | 5                                             | -310.E6          | 310.E6      | 5                                             |  |  |
| ×      | r106       | •      | 5                                             | -310.E6          | 310.E6      | 5                                             |  |  |
| ×      | r107       | 0      | 5                                             | -310.E6          | 310.E6      | 5                                             |  |  |



(8)

# Uncertainty Quantification

- 1. Click Method
- 2. Mark the indicated checkbox to turn on the keyword max\_function\_evaluations
- 3. Set the indicated input box to 1
- Reminder! Ensure max\_function\_evaluations is set to 1. This is a step that is very easy to overlook.
- The goal is to perform an uncertainty quantification and run the optimization procedure only to compute the constraint values, i.e. probabilities of failure. The keyword max\_function\_evaluations is set to 1 to allow the optimization routine to calculate only constraint values and terminate with zero iterations, i.e. run the black box function once.

| SOL 200 We | eb App · | Machine    | Learning      | Parameters  | Responses | Dakota | Download | Results |                             |
|------------|----------|------------|---------------|-------------|-----------|--------|----------|---------|-----------------------------|
| Wizard     | Method   | Model      | Inspection    |             |           |        |          |         |                             |
| Nethod     | J        |            |               |             |           |        |          |         |                             |
| method     |          |            |               |             |           |        |          |         | I Display Selected Keywords |
| • 🗹        | id_met   | nod        |               |             |           |        |          |         |                             |
| •          | final so | olutions   |               |             |           |        |          |         |                             |
| 。 🗸        | Method   | (Iterative | Algorithm) (C | Group 1)    |           |        |          |         |                             |
|            | conmin_  | mfd        |               |             |           |        |          |         |                             |
|            | •        | 🗹 mod      | el_pointer    |             |           |        |          |         |                             |
|            |          | OPTIN      | 1_M           |             |           |        |          |         |                             |
|            |          | cons       | traint_tolera | nce         |           |        |          |         |                             |
|            |          | conv       | ergence_tole  | erance      |           |        |          |         |                             |
|            |          | 🔽 max      | _function_ev  | aluations 2 | )         |        |          |         |                             |
|            | (4)      | 1          |               | 3           | )         |        |          |         |                             |
|            |          |            | _iterations   |             |           |        |          |         |                             |
|            |          | scali      | ng            |             |           |        |          |         |                             |
|            |          | spec       | ulative       |             |           |        |          |         |                             |



# Uncertainty Quantification

- 1. Click Display Selected Keywords
- 2. Scroll to the method keyword block with id\_method=UQ
- 3. Change the number of samples to 200.

An LHS of size 100 is used to determine the probabilities. This is a contrast to the first part of this tutorial where reliability methods were used to approximate the probabilities. The probabilities at the end of the OUU are approximate, so the goal in part B is to confirm actual probabilities, based on an LHS of size 200, are below the max probability of failure of 5%.





# Download

#### 1. Click Download

2. Click Download BDF Files





# Start MSC Nastran

A new .zip file has been downloaded

- 1. Right click on the file
- 2. Click Extract All
- 3. It is good practice to avoid special characters and spaces in paths, directory names and file names. Name the final directory: nastran\_working\_directory\_1.
- 4. Click Extract on the following window
- Always extract the contents of the ZIP file to a new, empty folder.

| Caparici 🖡         | Downloads +                                |        | <b>▼</b> 4 <sub>7</sub> | Search Do    | ownload   | s 🔎      |                                           |
|--------------------|--------------------------------------------|--------|-------------------------|--------------|-----------|----------|-------------------------------------------|
| ganize 🔻 🛛 🔭 Open  | ✓ Share with ▼ E-mail New                  | folder |                         |              |           | •        |                                           |
| Favorites          | Name                                       |        |                         | Date modifie | d         | Туре     |                                           |
| n Desktop          | 1_starting_files                           |        |                         | 10/17/2024 5 | 46 PM     | File fo  |                                           |
| bownloads          | In astran_working_directory                |        |                         | 10/17/2024 8 | 04 PM     | File fo  |                                           |
| Recent Places      | 🚹 nastran_working_directory.zip            |        |                         | 10/17/2024 7 | :00 PM    | Com      |                                           |
|                    | 🔒 nastran_working_directory (1).zip        | ソ      | -                       | 10/17/2024 9 | Mare      | Com      |                                           |
| Libraries          |                                            |        | Open                    |              |           |          |                                           |
| Documents          |                                            |        | Open in new win         | dow          |           |          |                                           |
| J Music            |                                            |        | Extract All. 2          | )            |           |          |                                           |
| Pictures           |                                            |        | Edit with Notepa        | d++          |           |          |                                           |
| Videos             |                                            |        | Open with               |              |           |          |                                           |
| Computer           |                                            |        | Share with              |              | +         |          |                                           |
| Local Disk (C:)    |                                            |        | Restore previous        | versions     |           |          |                                           |
| Downloads (\\VBox! |                                            |        | Send to                 |              |           |          |                                           |
| _                  |                                            |        | Send to                 |              |           |          |                                           |
| Network            |                                            |        | Cut                     |              |           |          |                                           |
|                    |                                            |        | Сору                    |              |           |          |                                           |
|                    |                                            |        | Create shortcut         |              |           |          |                                           |
|                    |                                            |        | Delete                  | _            |           |          |                                           |
|                    |                                            |        | Rename                  | ~            |           |          |                                           |
| astran_working     | J_directory (1).zip Date modified: 10/17/2 | 202    | Properties              | $\bigcirc$   | Extra     | t Com    | pressed (Zipped) Folders                  |
| Compressed (zip    | ped) Folder Size: 148 ME                   |        |                         |              |           |          |                                           |
|                    |                                            |        |                         | S            | elect a   | a Dest   | tination and Extract Files                |
|                    |                                            |        |                         |              | الانتجاما | o entre  | acted to this folder                      |
|                    |                                            |        |                         |              | CALL      |          | in Demoleculo unistricture directore 1    |
|                    |                                            |        |                         |              | C:\Users  | \capar   | Ici\Downloads\nastran_working_directory_1 |
|                    |                                            |        |                         |              | Charles   |          |                                           |
|                    |                                            |        |                         |              | _ SHOW    | extracte | zu nies when complete                     |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |
|                    |                                            |        |                         |              |           |          |                                           |



**HEXAGON** 

Technology Partner

- 1. Navigate to the following directory
  - nastran working directory/ workspace d
- Open file dakota.out in Notepad++
- 3. Scroll to end of this file and find the optimal solution listed under section Best parameters. These are the optimal variable values from the previous OUU.
- 4. Press and hold CTRL+ALT on the keyboard and use the left mouse button to select the indicated values for all 53 variables.
- Open a new Notepad++ window and paste the selected values to the new window.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 🚰 *new 1 - Notepad++                                                                  |                   |                    |                              |           |                                         |          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|-------------------|--------------------|------------------------------|-----------|-----------------------------------------|----------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ? + 🔻 |                   |                    |                              |           |                                         |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                       | 8 * • • • >       | c   # 🏂   🗟 🤘      | 🖫 🖼 🚍 1 🎼 🖉 📓 🚯              | i 🔴 🖬     | ) 💽 🖻 🖻 📾 🔓 🏠 🖛 📔 🛸 🧶 👋                 |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                               | 🕨 📄 dakota.out 🛛                                                                      |                   |                    |                              | 🛔 📄 new 1 |                                         |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503763 <<<<<                                                                          | Function evaluat  | ion summary (UQ_1  | I): 284 total (282 new, 2 du | 1         | 1.3179002125e-03                        | $\frown$ |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503764 <<<<                                                                           | Best parameters   |                    |                              | 2         | 1.7973456563e-03                        | (5)      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503765                                                                                |                   | 1.3179002125e-03   | x1_mean                      | 3         | 2.2591465096e-03                        | $\smile$ |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503767                                                                                |                   | 2 2591465096e=03   | x2_mean                      | 4         | 2.2591465096e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503768                                                                                |                   | 2.2591465096e-03   | x4 mean                      | 5         | 2.2591465097e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503769                                                                                |                   | 2.2591465097e-03   | x5 mean                      | 6         | 2.2591465096e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503770                                                                                |                   | 2.2591465096e-03   | x6_mean                      | 7         | 2.2591465096e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503771                                                                                |                   | 2.2591465096e-03   | x7_mean                      | 8         | 1.7973456563e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503772                                                                                |                   | 1.7973456563e-03   | x8_mean                      | 9         | 1.3179002125e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503774                                                                                |                   | 9 1467021258-03    | x9_mean                      | 10        | 9.1467021248e-04                        |          |  |  |  |
| Carlo - K nastran w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orking directory 🕨 workspace d  | 503775                                                                                |                   | 1.0674418472e-03   | x11 mean                     |           | 1.06/44184/2e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ontang_ancerony v monopace_a    | 503776                                                                                | 4                 | 9.1467021248e-04   | x12 mean                     | 12        | 9.146/021248e-04                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503777                                                                                | -                 | 1.3179002125e-03   | x13_mean                     | 14        | 2.2501465006-03                         | E        |  |  |  |
| Organize 🔻 🔄 Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Share with 🔻 New folder         | 503778                                                                                |                   | 2.2591465096e-03   | x14_mean                     | 15        | 1 79724565620-02                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503779                                                                                |                   | 1.7973456563e-03   | x15_mean                     | 16        | 2 2591465096=-03                        |          |  |  |  |
| Eavorites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Name                            | 503781                                                                                |                   | 2.2591465096e-03   | x10_mean                     | 17        | 2.2591465096e-03                        |          |  |  |  |
| A ravonics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 503782                                                                                |                   | 2.2591465097e-03   | x18 mean                     | 18        | 2.2591465097e-03                        |          |  |  |  |
| se Desktop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dakota.err                      | 503783                                                                                |                   | 2.2591465096e-03   | x19_mean                     | 19        | 2.2591465096e-03                        |          |  |  |  |
| Downloads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dakata out                      | 503784                                                                                |                   | 2.2591465096e-03   | x20_mean                     | 20        | 2.2591465096e-03                        |          |  |  |  |
| - Downloads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dakota.out                      | 503785                                                                                |                   | 2.2591465097e-03   | x21_mean                     | 21        | 2.2591465097e-03                        |          |  |  |  |
| 🔛 Recent Places                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dakota.rst                      | 503786                                                                                |                   | 2.2591465096e-03   | x22_mean                     | 22        | 2.2591465096e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dakata concele output tran      | 503788                                                                                |                   | 1.3179002125e-03   | x25_mean                     | 23        | 2.2591465096e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dakota_console_output.tmp       | 503789                                                                                |                   | 1.7973456563e-03   | x25 mean                     | 24        | 1.3179002125e-03                        |          |  |  |  |
| 🥃 Libraries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | study_d.in                      | 503790                                                                                |                   | 9.1467021248e-04   | x26_mean                     | 25        | 1.7973456563e-03                        |          |  |  |  |
| Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tabular data                    | 503791                                                                                |                   | 9.1467021248e-04   | x27_mean                     | 26        | 9.1467021248e-04                        |          |  |  |  |
| Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 503792                                                                                |                   | 1.0000000000e-05   | x28_mean                     | 27        | 9.1467021248e-04                        |          |  |  |  |
| 🚽 Music                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 503793                                                                                |                   | 1.0674418472e-03   | x29_mean<br>x30 mean         | 28        | 1.0000000000e-05                        |          |  |  |  |
| Pictures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | 503795                                                                                |                   | 1.00000000000e-05  | x31 mean                     | 29        | 1.0674418472e-03                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503796                                                                                |                   | 9.1467021248e-04   | x32_mean                     | 30        | 1.0674418472e-03                        |          |  |  |  |
| 📑 Videos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | 503797                                                                                |                   | 1.0674418472e-03   | x33_mean                     | 31        | 1.0000000000e-05                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503798                                                                                |                   | 7.8231184718e-04   | x34_mean                     | 32        | 9.1467021248e-04                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503799                                                                                |                   | 1 000000000000e=05 | x35_mean                     | 33        | 1.06/4418472e-03                        |          |  |  |  |
| 🖳 Computer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 503801                                                                                |                   | 1.0000000000e-05   | x37 mean                     | 34        | 1.0000000000000000                      |          |  |  |  |
| 🚨 Local Disk (C:)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 503802                                                                                |                   | 7.8231184718e-04   | x38_mean                     | 36        | 1.0000000000000000000000000000000000000 |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503803                                                                                |                   | 9.1467021248e-04   | x39_mean                     | 37        | 1.000000000000000000000000000000000000  |          |  |  |  |
| Pownloads (\\VBoxS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 503804                                                                                |                   | 1.0674418472e-03   | x40_mean                     | 38        | 7.8231184718e-04                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503805                                                                                |                   | 1.00000000000e-05  | x41_mean<br>x42 mean         | 39        | 9.1467021248e-04                        |          |  |  |  |
| Construction of the second sec |                                 | 503807                                                                                |                   | 9.1467021248e-04   | x43 mean                     | 40        | 1.0674418472e-03                        |          |  |  |  |
| 📭 Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 503808                                                                                |                   | 1.0674418472e-03   | x44 mean                     | 41        | 1.0000000000e-05                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503809                                                                                |                   | 1.0674418472e-03   | x45_mean                     | 42        | 1.0000000000e-05                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                               | 503810                                                                                |                   | 1.000000000e-05    | x46_mean                     | 43        | 9.1467021248e-04                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503811                                                                                |                   | 7.8231184718e-04   | x47_mean                     | 44        | 1.0674418472e-03                        |          |  |  |  |
| dakota.out Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e modified: 11/13/2024 10:36 AM | 503813                                                                                |                   | 7.8231184718e-04   | x49 mean                     | 45        | 1.0674418472e-03                        |          |  |  |  |
| OUT File                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Size: 20.6 MB                   | 503814                                                                                |                   | 1.0000000000e-05   | x50 mean                     | 46        | 1.0000000000e-05                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503815                                                                                |                   | 7.8231184718e-04   | x51_mean                     | 47        | 7.8231184718e-04                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503816                                                                                |                   | 9.1467021248e-04   | x52_mean                     | 48        | 7.8231184718e-04                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 503817                                                                                |                   | 1.0674418472e-03   | ss_mean                      | × 49      | 7.8231184718e-04                        |          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                                                                       | III               |                    | •                            | 50        | 1.000000000e-05                         | •        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | Normal text file                                                                      | length : 952 line | es : 53            | Ln:1 Col:1 Pos:1             | Windo     | ws (CR LF) UTF-8                        | INS      |  |  |  |



- 1. In the new window select all the values with the mouse or with CTRL+A
- 2. Press CTRL+J to join all the lines

| File Edit | : Search View Encoding Language |
|-----------|---------------------------------|
| 6         | ] 🖻 🗟 🐚 😂 🖌 🛍 🖿 🗩               |
| 🗐 new 1 i | X                               |
| 1         | 1 3179002125e-03                |
| 2         | 1,7973456563e-03 (1)            |
| 3         | 2 2591465096=-03                |
| 4         | 2 25914650968-03                |
| 5         | 2 2591465097e-03                |
| 6         | 2.2591465096e=03                |
| 7         | 2.2591465096e=03                |
| 8         | 1.7973456563e=03                |
| 9         | 1.3179002125e-03                |
| 10        | 9.1467021248e-04                |
| 11        | 1.0674418472e=03                |
| 12        | 9.1467021248e-04                |
| 13        | 1.3179002125e-03                |
| 14        | 2.2591465096e-03                |
| 15        | 1.7973456563e-03                |
| 16        | 2.2591465096e-03                |
| 17        | 2.2591465096e-03                |
| 18        | 2.2591465097e-03                |
| 19        | 2.2591465096e-03                |
| 20        | 2.2591465096e-03                |
| 21        | 2.2591465097e-03                |
| 22        | 2.2591465096e-03                |
| 23        | 2.2591465096e-03                |
| 24        | 1.3179002125e-03                |
| 25        | 1.7973456563e-03                |
| 26        | 9.1467021248e-04                |
| 27        | 9.1467021248e-04                |
| 28        | 1.000000000e-05                 |
| 29        | 1.0674418472e-03                |
| 30        | 1.0674418472e-03                |
| 31        | 1.000000000e-05                 |
| 32        | 9.1467021248e-04                |
| 33        | 1.0674418472e-03                |
| 34        | 7.8231184718e-04                |
| 35        | 1.0000000000e-05                |
| 36        | 1.000000000e-05                 |
| 37        | 1.000000000e-05                 |
| 38        | 7.8231184718e-04                |
| 39        | 9.1467021248e-04                |
| 40        | 1.0674418472e-03                |
| 41        | 1.0000000000e-05                |
| 42        | 1.0000000000e-05                |
| 43        | 9.1467021248e-04                |
| 44        | 1.0674418472e-03                |
| 45        | 1.0674418472e-03                |
|           | ×                               |





1. Add the keyword *initial\_point* to the beginning of the line and include a space. Example:

initial\_point 1.3179002125e-03
[...]

- Open file nastran\_working\_directory/workspace\_ d/study\_d.in
- 3. Search for the keywordblock with id\_variables='OPTIM\_V'
- Copy the new line and replace the old line found in study\_d.in
- 5. Click save
- 6. Ensure the save icon is blue, not red. A blue color indicates the file has been saved. A red icon indicates the file has not been saved.

The initial values of the variables has been updated.





# Start Desktop App

- 1. Inside of the new folder, double click on Start Desktop App
- Click Open, Run or Allow Access on any subsequent windows
- 3. The Desktop App will now start
- One can run the Nastran job on a remote machine as follows:
  1) Copy the BDF files and the INCLUDE files to a remote machine. 2) Run the MSC Nastran job on the remote machine. 3) After completion, copy the BDF, F06, LOG, H5 files to the local machine. 4) Click "Start Desktop App" to display the results.

#### Using Linux?

Follow these instructions:
1) Open Terminal
2) Navigate to the nastran\_working\_directory cd ./nastran\_working\_directory
3) Use this command to start the process ./Start\_MSC\_Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x ./nastran\_working\_directory



Questions? Email: christian@ the-engineering-lab.com





x

# Status

 While MSC Nastran is running, a status page will show the current state of MSC Nastran

#### SOL 200 Web App - Status

🗮 Python 👘 📥 MSC Nastran

#### Status

| Name      | Status of Job | Design Cycle | RUN TERMINATED DUE TO |
|-----------|---------------|--------------|-----------------------|
| model.bdf | Running       | None         |                       |



# Completion

1. The process is complete when the indicated web apps are opened.

|               |                        |                   | 1                 |      |                     |         |     |   |
|---------------|------------------------|-------------------|-------------------|------|---------------------|---------|-----|---|
| Status        | × Dakota Resu          | lts 🗙 📔 🛛 L       | ocal Optimization | ×    | HDF5 Explorer       | ×       | +   |   |
| ← → C         | Not secure   192.168.5 | 6.1:8080/optimiza | tion/hdf5/?room   | =882 | 06#!#plots-browser  |         | Q   | Ê |
| SOL 200 Web A | App - HDF5 Explorer    | Acquire Dataset   | Plots Browser     | C    | ombine Plots Last P | lot Add | led |   |



# No Optimization

1

- Open file dakota.out in a text editor.
   Scroll to the very end of the file and you will find the results.
- An LHS of size 200 (200 MSC Nastran runs) was evaluated to determine the probabilities

3. Since the keyword max\_function\_evaluations was set to 1, the optimizer terminates after all 200 runs are complete and zero optimization iterations are performed. Recall the goal is to just run the optimization procedure to calculate the constraint values.

```
UQ I Evaluation 200
Begin
                            2
Parameters for evaluation 200:
                   1.0209139396e-03 x1
                   2.1493266355e-03 x2
                   2.0693108677e-03 x3
                   [...]
blocking fork:
Active response data for UQ I evaluation 200:
1.9927034000e+02 r1
                   9.7951450000e+07 r2
                  -6.9789300000e+07 r3
                  [...]
                  -9.2117390000e+07 r107
Active response data from sub iterator:
Active set vector = { 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
                   1.8948053825e+02 mean r1
                   1.000000000e+00 ccdf plev1 r2
                   0.000000000e+00 ccdf plev2 r2
                   [...]
NestedModel Evaluation
                     1 results:
Active response data from nested mapping:
1.8948053825e+02 f obj
                   1.000000000e+00 r2 pl
                   [...]
                   0.000000000e+00 r107_pu
                                                            (3)
Iteration terminated: max function evaluations limit has been met.
<<<< Function evaluation summary (UQ I): 200 total (200 new, 0 duplicate)
<<<<< Best parameters
                  1.3179002125e-03 x1_mean
                   1.7973456563e-03 x2 mean
                   2.2591465096e-03 x3 mean
                   [...]
                   1.0674418472e-03 x53 mean
<<<< Best objective function =
                   1.8948053825e+02
<<<<< Best constraint values =
                   1.000000000e+00
                   [...]
```



# Results

1. The OUU was configured to constraint reliability indices. This verification was configured such that the constraints are for probabilities of failure. The reported values are probabilities of failure.

```
Beqin
        UQ I Evaluation 200
-----
Parameters for evaluation 200:
                  1.0209139396e-03 x1
                  2.1493266355e-03 x2
                  2.0693108677e-03 x3
                  [...]
blocking fork:
Active response data for UQ I evaluation 200:
1.9927034000e+02 r1
                  9.7951450000e+07 r2
                  -6.9789300000e+07 r3
                  [...]
                  -9.2117390000e+07 r107
Active response data from sub iterator:
Active set vector = { 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
                  1.8948053825e+02 mean r1
                  1.000000000e+00 ccdf plev1 r2
                  0.000000000e+00 ccdf plev2 r2
                   [...]
NestedModel Evaluation
                    1 results:
-----
Active response data from nested mapping:
1.8948053825e+02 f obj
                  1.000000000e+00 r2 pl
                  [...]
                  0.0000000000e+00 r107 pu
Iteration terminated: max function evaluations limit has been met.
<<<< Function evaluation summary (UQ I): 200 total (200 new, 0 duplicate)
<<<<< Best parameters
                  1.3179002125e-03 x1 mean
                  1.7973456563e-03 x2 mean
                  2.2591465096e-03 x3 mean
                  [...]
                  1.0674418472e-03 x53 mean
<<<< Best objective function =
                  1.8948053825e+02
<<<<< Best constraint values =
                                   (1)
                  1.000000000e+00
                   [...]
```


#### Discussion of Final Probabilities of Failure

The same results discussed on the previous page may be inspected in the web app.

- 1. Select the Dakota Results tab or window
- 2. Click OUU Results
- 3. Notice the final design is deemed feasible and all the individual constraints are satisfied
- 4. Click Display Additional Columns
- 5. Click Display All as Probability of Failure

There is a goal to identify the most active or most violated constraints. Such constraints are marked with an asterisk (\*).

- 6. In the indicated search bar, search for character \*
- 7. The search reveals the following constraints are the most active or most violated
- 8. Note the probability of failure is 5%, which is on the limit of 5% specified in this exercise.



\* This constraint is the most active or most violated



## Discussion of Final Probabilities of Failure

The table on the previous page displayed separate probabilities of failure for the bounds, i.e. P(a < X) and P(X < b). There is a desire to know the combined probability  $P(a < X \le b)$ . The probability for  $P(a < X \le b)$  is available by following these steps.

- Navigate to section Constraints P(a < X ≤ b)
- 2. In the indicated search bar, search for character \*
- 3. The search reveals responses that have the highest probability of failure.
- 4. The Description column displays the probabilities now consider both the lower and upper bound, i.e.  $P(a < X \le b)$ .
- 5. The probability of survival  $P(a < X \le b)$  is displayed in column ps.
- The probability of survival P(a > X OR b < X) is displayed in column pf.

The highest probability of failure is 5%.



| Descriptor | Description               |  | ps       | pf      |
|------------|---------------------------|--|----------|---------|
| * (2)      | 4                         |  | 5        | 6       |
| r98 * 3    | P(-310.E6 < r98 ≤ 310.E6) |  | 95.0000% | 5.0000% |

\* This response has the highest probability of failure



# Comparison of Approximate and Actual $p_f$

- It is seen the actual and worst case  $p_f$  of 5% is on the edge of the desired 5%  $p_f.$
- The OUU in part A and the verification of probabilities in part B has been a success.

| Response                       | Part A - OUU<br>Approximated Reliability Index<br>(Equivalent Probability of<br>Failure) | Part B - UQ Generated<br>(Actual Probability of failure) |
|--------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Comments                       | The OUU considered and reported reliability indices                                      | These are the probabilities after an LHS of size 200     |
| Maximum Probability of Failure | 1.6716146649e+00<br>(4.73%) for responses r55_pu,<br>r63_pu, r67_pu, r78_pu              | (5%) for response r98_pl                                 |



# Comparison of Approximate and Actual $p_f$

This exercise used a 3% constraint on  $p_f$ . If one is more daring, a 4% constraint may be used to yield a more optimal solution. Just note that the final probabilities should be verified with an LHS of size N.

#### Configure UQ Responses

#### Statistics to compute at each response level

Probabilities

×





End of Tutorial



# Appendix



# Appendix Contents

- Interpreting the Dakota Input File
- Cumulative and Complementary Probabilities
- Probabilities, Reliability Index and Generalized Reliability Index
- Configuring bounds for probabilities of failure in Sandia Dakota
- Configuring bounds for both UQ and OUU variables in Sandia Dakota



The Dakota input file has a distinct format that is not like the MSC Nastran bulk data file format. The following pages describe the meaning of some of the Dakota keywords such as primary\_response\_mapping, secondary\_response\_mapping, etc.

```
study_d.in
model
   id model 'OPTIM M'
   responses pointer 'OPTIM R'
   variables pointer 'OPTIM V'
      nested
         sub method pointer 'UQ'
            primary response mapping 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
            secondary response mapping
             0. 0. 0. 0. 1. 0. 0. 0. 0. 0.
             0. 0. 0. 0. 0. 1. 0. 0. 0. 0.
             0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
             0. 0. 0. 0. 0. 0. 0. 0. 1.
           primary variable mapping 'x1'
                                        'x2'
            secondary variable mapping 'mean'
                                             'mean'
method
   id method 'UQ'
      sampling
         model pointer 'UQ M'
         distribution
              complementary
         response levels -20000 20000 -20000 20000
           num response levels 0 2 2
         sample type
              lhs
         samples 5000
         seed 12347
```



- The interface keyword is used to define the executable of a black box function. In this exercise, the analysis\_drivers keyword points to an executable called desktop\_app\_a. This executable runs MSC Nastran automatically whenever parameter inputs xi are provided and returns responses ri.
- Analysis drivers are by far the costliest component to develop when implementing uncertainty quantification or optimization under uncertainty, and often require weeks of development to construct analysis drivers. The SOL 200 Web App includes a run ready analysis driver for MSC Nastran and saves substantial development time.

interface

id\_interface 'UQ\_ACTUAL'
analysis\_drivers './app/desktop\_app\_a --analysis\_driver\_dakota'
fork



- L. The responses keyword is used to define the responses output by the black box function. From what is defined, the black box function returns 3 responses, zero gradients and zero hessians. To help differentiate the responses, descriptors r1, r2 and r3 are used for the 3 responses.
- 2. Notice the sampling method is defined, which is a method used for uncertainty quantification.
- 3. Since the distribution is set to complementary, the tail probabilities outputted will be complementary cumulative distribution function (CCDF) values. Alternatively, cumulative may be used. In this exercise, it is assumed complementary is used throughout.
- 4. The response\_levels keyword is used to specify the values for which probabilities are requested. Notice the bound values of -20000 and 20000 are used.
- 5. The num\_response\_levels keyword is used to map the response levels to each response. In this example, the num\_response\_levels '0 2 2' is read as follows: The first zero response levels are associated with response r1, the next 2 response levels are associated with r2, and the next 2 response levels are associated with r3. Response r1 is the weight, and r2 and r3 are the stress responses. Probabilities are requested for only the stress responses r2 and r3, not r1.
- Latin hypercube sampling (LHS) is used with size 5,000 samples. LHS employs a random number generator. Random number generators are algorithms, and if certain initial conditions are defined, the random number generator will repeatedly output the same number. The seed is used as an initial condition that helps replicate the same LHS. The seed can be any positive integer and will generate the same LHS values for the same seed value.





 The keywords primary\_response\_mapping and secondary\_response\_mapping keywords are the most confounding for new users and are explained next.

2. When a UQ method is employed, e.g. sampling, local\_reliability, etc. each response will output a mean and standard deviation (2 outputs). If N response\_levels were defined for response ri, N additional outputs are available. In this example, r1 outputs a mean and standard deviation. Response r2 outputs a mean, standard deviation and 2 probabilities. Response r3 also outputs a mean, standard deviation and 2 probabilities. For this example, there are a total of 10 statistical quantities and are stored in the indicated column vector.

```
model
  id model 'OPTIM M'
  responses pointer 'OPTIM R'
  variables pointer 'OPTIM V'
     nested
                                  1
        sub method pointer 'UQ'
           primary response mapping
                                        0. 0. 0. 0. 0. 0. 0. 0. 0.
           secondary response mapping
                     0. 0. 1.
                 0.
                                Ο.
                                    Ο.
                                        Ο.
             0.
                                            0.
                                               0.
                            0. 1.
                                   Ο.
                                        Ο.
                     0. 0.
                 Ο.
                                            0.
                                                Ο.
                 0. 0. 0. 0. 0. 0. 0. 1.
                                               Ο.
                 0. 0. 0. 0. 0. 0. 0. 0. 1.
           primary variable mapping
                                   'x1' 'x2'
           secondary variable mapping
                                      'mean'
                                              'mean'
method
  id method 'UQ'
     sampling
                                                                 2
        model pointer 'UQ M'
        distribution
                                                            rr1_{magn}
              complementary
        response levels -20000 20000 -20000
                                               20000
```

$$\begin{array}{c|c} r1_{std} \\ r1_{std} \\ r2_{mean} \\ r2_{std} \\ r2_{pl} \\ r2_{pl} \\ r2_{pu} \\ r2_{pu} \\ r3_{mean} \\ r3_{std} \\ r3_{pl} \\ r3_{pl} \\ P(-20000 < r3) \\ P(-2000 < r3) \\ P(-2000 < r3) \\ P(-2000 < r3) \\ P(-2000 < r3) \\ P(-2000$$

Questions? Email: christian@ the-engineering-lab.com

sample type

samples 5000

descriptors 'r1' 'r2'

response functions 3

seed 12347

id responses 'UQ R'

no gradients

no hessians

responses

lhs

num response levels 0 2 2

'r3'



Keywords primary\_response\_mapping and secondary\_response\_mapping define matrices. The product of these matrices and the column vector define the objective and constraint responses.

#### primary response mapping Ο. 0. 0. 0. 0. 0. Ο. 1. 0. 0. secondary response mapping Ο. Ο. 1. Ο. Ο. 0. 0. Ο. 0. Ο. 1. Ο. Ο. Ο. Ο. 0. 0. 0. 0. 0. 0. Ο. Ο. Ο. Ο. 0. 0. 0. 0. 1. 0. 0. 0. Ο. Ο. Ο. Ο. Ο. Ο. 1.









- 1. A different responses keyword is used to define the responses used during the OUU. Notice 1 objective response and 4 inequality constraints are defined.
- 2. The bounds specify the bounds for probability of survival and failure.

responses (1) id responses 'OPTIM R' descriptors 'f\_obj' 'r2\_pl' 'r2\_pu' 'r3\_pl' 'r3\_pu' numerical gradients no hessians objective functions 1 nonlinear inequality constraints 4 upper bounds inf 0.050000 inf 0.050000

гr1....

primary\_response\_mapping

secondary\_response\_mapping



# Cumulative and Complementary Probabilities



Dakota outputs either *cumulative distribution function* (CDF) values or *complementary cumulative distribution function* (CCDF) values. Only one of these values may be output, not both together.

It must be decided if CDF or CCDF values are used throughout the UQ or OUU.

The CDF and CCDF are related by the following relationships

 $CDF = F_X(X)$  $CCDF = \overline{F}_X(x) = 1 - F_X(X)$ 

The following is information regarding the differences between CDF and CCDF values.







method id\_method 'UQ' local\_reliability model\_pointer 'UQ\_M' distribution complementary response\_levels 10000 20000



Consider a random variable *X* that corresponds to the axial stress of a truss member and is allowed to range between a lower bound of 10,000 and an upper bound of 20,000. *X* has a mean of 15000 and standard deviation of 3000.

For the upper bound, if CDF values are used, the probability of survival is

 $p_s = P(X \le 20000).$ 

For the upper bound, if CCDF values are used, the probability of failure is

 $p_f = P(20000 < X).$ 

• For the lower bound, if CDF values are used, the probability of failure is

 $p_f = P(X \le 10000).$ 

For the lower bound, if CCDF values are used, the probability of survival is

 $p_s = P(10000 < X).$ 

The use of CDF or CCDF values leads to a mixture of  $p_f$  and values  $p_s$  when configuring an OUU.





## Dakota Output

- Consider the output from Dakota after an uncertainty quantification.
   Probabilities are output for response levels 10000 and 20000.
- If the cumulative option is used, the probabilities are  $P(X \le x)$ .
- If the complementary option is used, the probabilities are P(x < X).
  - For response level 10000, the probability output is a probability of survival.
  - For response level 20000, the probability output is a probability of failure.



The Dakota input files are configured to use distribution=complementary, which triggers the output of CCDF values.

Suppose at most the probability of failure of 0.05 (5%) is imposed. The bounds on the probabilities are as follows.

For the upper bound, the quantity available is the probability of failure, so this quantity is directly constrained to at most 5%.

 $p_f = P(20000 < X) < 0.05$ 

For the lower bound, the quantity available is the probability of survival. If at the most, a 5% probability of failure is imposed, this is equivalent to saying the probability of survival is greater than 95%. The constraint on the probability of survival is as follows:

$$0.95 < p_s = P(10000 \le X)$$

#### Dakota Input File





Technology Partner

A. In the web app, you supply limits on probabilities of failure for both the lower and upper bound. Internally, the web app is automatically managing the constraints for probabilities of failure and survival.

#### Configure OUU Constraints





Assume probabilities have been selected and constrained.

| Configure UQ Responses                       |  |  |
|----------------------------------------------|--|--|
| Statistics to compute at each response level |  |  |
| Probabilities                                |  |  |
| Probabilities                                |  |  |
| Reliabilities                                |  |  |
| Generalized Reliabilities                    |  |  |

Let

r1\_pl = P(10000 < r2)

r1\_pu = P(20000 < r2)

- A. Refer to the table titled Configure OUU Objective and Additional Constraints
- B. Close inspection of the final bounds shows that constraints on probability of survival P(10000 < r1) are provided for the lower bound of 10000, but constraints on probability of failure P(20000 < r1) are provided for the upper bound of 20000. This is because the complementary (CCDF) option was used.

#### Configure OUU Objective and Additional Constraints

|                       | Objective<br>(f_obj, g | e<br>1)      | Constrai<br>(r1_pl) | nt 1 🗙       | Constrai<br>(r1_pu) | nt 2 ×       |
|-----------------------|------------------------|--------------|---------------------|--------------|---------------------|--------------|
| Label                 | Include                | Scale Factor | Include             | Scale Factor | Include             | Scale Factor |
| r1_mean               | C                      | 1.           | 0                   |              | 0                   |              |
| r1_standard_deviation | 0                      |              | 0                   |              | 0                   |              |
| r1_p1                 | 0                      |              | C                   | 1.           | 0                   |              |
| r1_p2                 | 0                      |              | 0                   |              | C                   | 1.           |
| Lower Bound           |                        | В            | 0.9500              | 00           |                     |              |
| Upper Bound           |                        |              |                     |              | 0.0500              | 00           |



+ Create Constraint

Some readers may be tempted to combine the probabilities and express a probability of survival as follows:

 $P(10000 < X \le 20000).$ 

If a maximum of 5% probability of failure is imposed and CDF values are available, the constraint is as follows:

 $0.95 < P(10000 < X \le 20000).$ 

While this is valid, there is a drawback. A single probability value does not indicate if the distribution is violating the lower or upper bound.

For example, suppose the following single probability is used:  $P(10000 < X \le 20000) = 0.74$ (74% survival). Since this single probability is less than the desired 95%, failure is expected. With a single probability, it is not known if the distribution is violating the lower or upper bound.

If separate probabilities are constrained, one for the lower and upper bounds, it makes it simpler to identify which of the bounds is being violated.

Consider the distribution shown on the right.

- For the upper bound (20000), the probability of failure is 25.25%. Since the maximum probability of failure is 5%, the probability of failure of the upper bound is violated.
- For the lower bound (10000), the probability of survival is 99.61%. The equivalent probability of failure is 0.38% and is within the 5% imposed.







#### Final Comments

During the optimization under uncertainty (OUU), the mean and standard deviation of the response's distribution will vary. The variation depends on the shape of the response function.

To the right is an example of the distribution of a response during an OUU.

- 1. The standard deviation is too large and the probabilities of failure for both the lower and upper bound are greater than 5%. The design is infeasible.
- 2. The mean has moved far enough to the right such that the probability of failure for the upper bound is greater than 5%. The design is infeasible.
- The mean is approximately half way between the lower and upper bound and yields a probability of failure within 5% for both lower and upper bounds. The design is feasible.
- 4. While the mean is close to the lower bound, the standard deviation is small enough such that probability of failure for the lower bound is less than 5%. The design is feasible.







PDF of Response – Design Cycle 3



#### PDF of Response – Design Cycle 4





# Probabilities, Reliability Index and Generalized Reliability Index



#### Probabilities, Reliability Index and Generalized Reliability Index

When configuring an OUU and constraining probabilities of failure, you have the option of constraining probabilities, reliability indices or generalized reliability indices. The following is a brief description of each.

#### Configure UQ Responses

#### Statistics to compute at each response level

| Reliabilities             | ~      |  |
|---------------------------|--------|--|
| Probabilities             |        |  |
| Reliabilities             |        |  |
| Generalized Reliabilities |        |  |
|                           | Search |  |
| ×                         | r1     |  |
| ×                         | r2     |  |
| ×                         | r3     |  |



# What is probability?

The likelihood of a random variable X exceeding a response level is denoted as a probability, e.g.  $P(X \le a)$ .

Consider a random variable X with a mean of 15000, standard deviation of 3000, and bounded between response levels 10000 and 20000.

If cumulative distribution function (CDF) values are available, the following probabilities may be determined.

- $P(X \le 20000)$
- $P(X \le 10000)$

If complementary cumulative distribution function (CCDF) values are available, the following probabilities may be determined.

- P(20000 < X)
- P(10000 < X)

The CDF ( $F_X(x)$ ) and CCDF ( $\overline{F}_X(x)$ ) are related by the following expression.  $F_X(x) = 1.0 - \overline{F}_X(x)$ 







## What is probability?

Also, the following probability may be determined.

 $P(10000 < X \le 20000)$ 

If cumulative distribution function (CDF) values are available, this probability may be determined as follows.

 $P(10000 < X \le 20000)$  $= P(X \le 20000) - P(X \le 10000)$  $=F_{X}$  (20000)  $-F_{X}$  (10000)

If complementary cumulative distribution function (CCDF) values are available, this probability may be determined as follows.

 $P(10000 < X \le 20000)$ = P(10000 < X) - P(20000 < X) $=\overline{F}_{X}$  (10000)  $-\overline{F}_{X}$  (20000)







Consider a random variable X that has a normal distribution

 $X \sim \mathcal{N}(\mu, \sigma^2)$ 

The probability density function (PDF) for a normal distribution is as follows

$$f_X(x) = rac{1}{\sqrt{2\pi}\sigma} \cdot \exp \left[ -rac{1}{2} \left( rac{x-\mu}{\sigma} 
ight)^2 
ight]$$

The cumulative distribution function (CDF) for a normal distribution is as follows

| $F_X(x) = \frac{1}{2}$ | $\frac{1}{2}\left[1+\mathrm{erf}\right]$ | $\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)$ |
|------------------------|------------------------------------------|---------------------------------------------|
|------------------------|------------------------------------------|---------------------------------------------|

Where erf is defined as

$$\mathrm{erf}(x) = rac{2}{\sqrt{\pi}}\int_0^x \exp(-t^2)\,\mathrm{d}t \;.$$

The CDF of a standardized normal distribution ( $\mu$ =0,  $\sigma$ =1) is as follows

$$arPhi(x) = F_X(x) = rac{1}{2} igg[ 1 + ext{erf} \left( rac{x}{\sqrt{2}} 
ight) igg]$$

Questions? Email: christian@ the-engineering-lab.com



What is  $\Phi(x)$ ?

 $\Phi(x)$  is the cumulative distribution function of a standardized normal distribution.

A standardized normal distribution is a normal distribution with mean 0 and standard deviation of 1.

 $X \sim N(0, 1)$ 

# What is a reliability index?

Per the Dakota Reference Manual, "CDF/CCDF reliabilities are calculated for specified response levels by computing the number of sample standard deviations separating the sample mean from the response level." The response level may either be the lower or upper bound. The reliability, often known as the reliability index, is defined as:

$$\beta = \frac{\mu_{ri} - Response \ Level}{\sigma_{ri}}$$

When the CDF option is used, the probability and reliability index  $\beta$  are related via the following expression:  $p(X \le x) = \Phi(-\beta)$ 

When the CCDF option is used, the probability and reliability index  $\overline{\beta}$  are related via the following expression:  $p(x < X) = \Phi(-\overline{\beta})$ 

Constraining reliability indices is equivalent to constraining probabilities.

The reliability index applies to normal or lognormal distributions.

When using local reliability methods for UQ, OUU converges faster when constraining reliability indices, not probabilities.



Recall the following: The random variable *X* has a mean of 15000, standard deviation of 3000, and bounded between response levels 10000 and 20000.

Questions? Email: christian@ the-engineering-lab.com



**HEXAGON** 

echnology Partne

# What is a reliability index?

The goal is to constrain the following probabilities to at most 5% failure.

 $p_{f, \text{lower}} = P(X \le 10000) < 0.05$ 

 $p_{f, upper} = P(20000 < X) < 0.05$ 

Consider the CCDF reliability indices  $\overline{\beta}$ . The same constraints on probability of failure are expressed as constraints on reliability indices.





Technology Partner

#### What is a generalized reliability index?

So far, *reliability indices* have been discussed. There is another type of reliability index named *generalized reliability index* that is worth briefly mentioning.

What is a limit state function?

The limit state function is the response function, e.g. stress, displacement, etc.

What are generalized reliabilities?

It has been assumed the limit state function is linear, so its *reliability index* is simply defined as:  $\beta = -\Phi^{-1}(p).$ 

When the limit state function is nonlinear, a *generalized* reliability index<sup>1</sup> is more suitable and is defined as:

 $\beta_{gen} = -\Phi^{-1}\left(\int_{S_a} \Phi(u_1)\Phi(u_2)\dots\Phi(u_n)\right)$ 

No modifications are necessary to the exercise, but note the following.

- A. Generalized reliability indices are output by Dakota by using the keyword gen\_reliabilities.
- B. If performing a UQ only, the Dakota output tables will have generalized reliability index values in the column name "General Rel Index"

#### References

1. Ditlevsen, O. "Generalized Second Moment Reliability index." *Journal of Structural Mechanics*, Vol. 7, No. 4, pp. 435-451, 1979.

| method                                    |
|-------------------------------------------|
| id_method 'UQ'                            |
| local_reliability                         |
| model_pointer 'UQ_M'                      |
| distribution                              |
| complementary                             |
| response_levels -20000 20000 -20000 20000 |
| compute                                   |
| gen_reliabilities                         |
| num_response_levels 0 2 2                 |
|                                           |

Level mappings for each response function: Complementary Cumulative Distribution Function (CCDF) for r2:

```
Response Level Probability Level Reliability Index General Rel Index
```



**(**B)

# Configuring bounds for probabilities of failure in Sandia Dakota



#### Configuring bounds for probabilities of failure in Sandia Dakota

- 1. The Dakota input file study d.in shows the bounds for probability of survival and failure are defined.
- 2. Notice the keyword distribution is set to complementary.

• The values displayed on this page are from a separate OUU and should not be confused with the values from the OUU configured in this workshop.

```
study d.in
responses
   id responses 'OPTIM R'
   descriptors 'f_obj' 'r2_pl' 'r2_pu' 'r3_pl' 'r3_pu'
     numerical gradients
     no hessians
      objective functions 1
        nonlinear inequality constraints 4
           lower_bounds 0.950000 -inf 0.950000
                                                   -inf
           upper bounds inf 0.050000 inf 0.050000
method
   id method 'UQ'
      sampling
        model pointer 'UQ M'
         distribution
              complementary 2
        response_levels -20000 20000 -20000
                                                20000
           num_response_levels 0 2 2
         sample type
               lhs
         samples 5000
         seed 12347
```



(1)

#### Configuring bounds for probabilities of failure in Sandia Dakota

The Dakota output is reporting probabilities under the constraints section.

- 1. The values of 1.0 represent the probability of survival  $(p_s)$  for the lower bounds of -20000. Since the goal was to ensure the  $p_s$  was greater then 0.95 and the final value was 1.0, the constraint is satisfied.
- 2. For the other values of 0.05055, these represent probability of failure  $(p_f)$  for the upper bounds of 20000. Since the goal was to ensure this value was at most 0.05 and since the final value was 0.05055, the constraint is slightly violated.
- 3. When probabilities were constrained internally during the OUU, a total of 25 MSC Nastran runs were required for convergence.
- The values displayed on this page are from a separate OUU and should not be confused with the values from the OUU configured in this workshop.





## Final Comment

For this example, it was stated that a maximum 5% probability of failure was desired.

- 1. One option is to constrain the probabilities directly.
- 2. An alternative is to constrain equivalent reliability indices.

When the local reliability is used for UQ, it is shown that constraining equivalent reliabilities yields faster optimizations than directly constraining probabilities. Also, both approaches yield nearly the same optimal solution, so constraining reliabilities or probabilities are both appropriate. Constraining reliabilities is preferred since it produces faster optimizations.

 The values displayed on this page are from a separate OUU and should not be confused with the values from the OUU configured in this workshop.

| Quantity of Interest<br>Constrained | Number of MSC Nastran<br>Runs to Converge |
|-------------------------------------|-------------------------------------------|
| Reliabilities                       | 17                                        |
| Probabilities                       | 25                                        |

#### OUU – Constraining reliabilities (2)

```
<<<<< Function evaluation summary (UQ I): 22
total (17 new, 5 duplicate)
<<<<< Best parameters
                               =
                      9.0702483418e-01 x1 mean
                      3.1924786716e-01 x2 mean
<<<<< Best objective function =
                      2.8847015000e+00
<<<<< Best constraint values =
                     -4.9722756150e+01
                      1.6444557973e+00
                     -4.9722756150e+01
                      1.6444557973e+00
<<<<< Best evaluation ID not available
(This warning may occur when the best iterate is
comprised of multiple interface
evaluations or arises from a composite,
surrogate, or transformation model.)
```

<<<< Iterator conmin\_mfd completed. <<<< Environment execution completed. DAKOTA execution time in seconds: Total CPU = 80.795 [parent = 80.795, child = 1.42109e-14] Total wall clock = 80.867

#### OUU – Constraining probabilities (1)

<<<< Function evaluation summary (UQ I): 30 total (25 new, 5 duplicate) <<<<< Best parameters = 9.0964936275e-01 x1 mean 3.1138241054e-01 x2 mean <<<< Best objective function = 2.8842592000e+00 <<<<< Best constraint values = 5.0551279430e-02 5.0551279430e-02 <<<< Best evaluation ID not available (This warning may occur when the best iterate is comprised of multiple interface evaluations or arises from a composite, surrogate, or transformation model.) <<<<< Iterator conmin mfd completed. <<<<< Environment execution completed. DAKOTA execution time in seconds:

```
Total CPU = 101.755 [parent =
101.755, child = -1.42109e-14]
Total wall clock = 106.657
```



# Configuring bounds for both UQ and OUU variables in Sandia Dakota



### Configuring bounds for both UQ and OUU variables in Sandia Dakota

The following applies if uncertain variables have a normal or lognormal distribution.

When performing optimization under uncertainty with Sandia Dakota and configuring bounds for both the uncertain variables and the optimization variables, the displayed errors are sometimes encountered.

This brief presentation discusses the cause and solution for this error.

#### File LHS.ERR

1

Lower bound of a bounded normal or lognormal distribution must be less than the 0.999 quantile. Found in Distribution # 2 Error was detected during LHS run

Upper bound of a bounded normal or lognormal distribution must be greater than the 0.001 quantile. Found in Distribution # 2 Error was detected during LHS run


Consider an uncertain variable's lognormal distribution with a mean of 10.0 and standard deviation of 0.01.







Suppose an upper bound on the distribution was equal to 12.5. No draws or samples will exceed the value of 12.5.

The bounds imposed on uncertain variables are termed the UQ bounds.







Direction of variable's mean during the optimization.

During OUU, the mean of the variables may be varied and optimized.

Consequently, the distribution for each variable will change as the mean varies during the optimization.

In this example, the variable's mean is allowed to vary between 1.0 and 10.0. Notice the change in its distribution. These bounds are termed the *OUU bounds*.





Suppose the OUU variable's initial value is at the upper bound of the OUU variable, which is 10.0.

Three different UQ upper bounds are displayed.

If the UQ or OUU upper bounds are not properly configured, there will be a nearly 0% probability of drawing a sample from the distribution. This 0% probability causes the error.





Similarly for the lower bound, suppose the OUU variable's initial value is at the lower bound of the OUU variable, which is 1.0.

Three different UQ lower bounds are displayed.

If the UQ or OUU lower bounds are not properly configured, there will be a nearly 0% probability of drawing a sample from the distribution. This 0% probability causes the error.





## LHS.ERR

Sandia Dakota flags problematic UQ and OUU bounds with this message. Lower bound of a bounded normal or lognormal distribution must be less than the 0.999 quantile. Found in Distribution # 2 Error was detected during LHS run

1 Upper bound of a bounded normal or lognormal distribution must be greater than the 0.001 quantile. Found in Distribution # 2 Error was detected during LHS run





UQ\_lower\_bound < OUU\_lower\_bound

And

OUU\_upper\_bound < UQ\_upper\_bound.

For the same example, recall that the OUU bounds were between 1.0 and 10.0. The UQ bounds should be wider or outside of the OUU bounds.







More experienced and daring users will find that the recommendation is not absolute. The actual requirement is the following.

UQ\_lower\_bound < 0.999 quantile of the distribution when the OUU variable's mean is at OUU\_lower\_bound

And

UQ\_upper\_bound > 0.001 quantile of the distribution when the OUU variable's mean is at OUU\_upper\_bound



