Workshop – Optimization Under Uncertainty - 3 Bar Truss, Part 1 of 2

AN UNCERTAINTY QUANTIFICATION AND OPTIMIZATION UNDER UNCERTAINTY TUTORIAL WITH SANDIA DAKOTA AND MSC NASTRAN

Questions? Email: christian@ the-engineering-lab.com

Goal: Decide UQ Method

- Optimization under uncertainty (OUU) is significantly more costly than a traditional optimization involving deterministic inputs and outputs. Part of the cost is due to the number of black box function runs that are necessary to perform the uncertainty quantification (UQ) and determine the tail probabilities.
- Sampling alone is the simplest but one of the costliest methods for UQ. The mean value first-order second-moment (MVFOSM) method is one of the least expensive UQ methods, but is limited to responses that are linear or nearly linear, response distributions that are normal (Gaussian) or nearly normal, and requires gradients. Efficient OUU depends on carefully selecting the least costly and accurate UQ method.

Classification	Characteristics	
Sampling	nonsmooth, multimodal response functions;	sampling (Monte Carlo or LHS)
	response evaluations are relatively inexpensive	
Local	smooth, unimodal response functions;	local_reliability (MV, AMV/AMV ² ,
reliability	larger sets of random variables;	AMV+/AMV ² +, TANA, FORM/SORM)
	estimation of tail probabilities	
Global	smooth or limited nonsmooth response;	global_reliability
reliability	multimodal response; low dimensional;	
	estimation of tail probabilities	
Adaptive	smooth or limited nonsmooth response;	importance_sampling,
Sampling	multimodal response; low dimensional;	gpais, adaptive_sampling,

Desired Problem

Table 5.3: Guidelines for UQ method selection.

estimation of tail probabilitiespof_dartssmooth or limited nonsmooth response;
multimodal response; low dimensional;
estimation of moments or moment-based metricspolynomial_chaos,
stoch_collocationuncertainties are poorly characterizedinterval: local_interval_est,
global_interval_est, sampling;
BPA: local_evidence, global_evidencesome uncertainties are poorly characterizednested UQ (IVP, SOP, DSTE) with epistemic
outer loop and aleatory inner loop, sampling

Source: Dakota User's Manual

Applicable Methods

Method

Stochastic

expansions

Epistemic

Mixed UQ

Uncertainty Quantification Problem Statement

Goal

The goal of this exercise is to determine the distribution of mass, stress and displacement responses. If the distribution is normal or nearly normal, the MVFOSM method may be used for UQ and OUU.

An initial sampling of 50 MSC Nastran runs is performed. The responses of each run is collected and the following is done.

- 1. Create histograms (Histogram and Frequency Diagram)
- 2. Compare histograms with a normal distribution

If the histograms have a normal or nearly normal distribution, the MVFOSM method may be used.

The MVFOSM method also requires gradients to be available, which is also discussed in this exercise.

Histograms

Sample moment statistics for each response function

	Mean	Standard Deviation	Skewness
r1	4.8279590943e+00	1.1754839330e-01	5.3215577792e-02
r2	1.3550873230e+04	4.7109459188e+02	1.5126416459e-01
r3	4.4340359141e+03	7.8657599827e+01	-9.4060255845e-02

Questions? Email: christian@ the-engineering-lab.com

Examples of Nonnormal Distributions

The examples shown on this page are for responses from other structural models and <u>not</u> the 3-bar truss.

- 1. For example 1, the response's skewness value is 1.0035985638e+00. This is a significantly large skewness value and indicates the distribution is highly asymmetric. A look at the histogram confirms the distribution is asymmetric. The orange plot which is the PDF for a normal distribution does not align to the histogram. Also, Microsoft PowerPoint was used to superimpose a possible PDF that better aligns to the histogram, refer to the red dashed line/plot. The actual distribution is likely a bi-modal distribution, not a normal distribution.
- P. For example 2, the response's skewness value is -7.0504626153e+00. This is a significantly large skewness value and indicates the distribution is highly asymmetric. A look at the histogram confirms the distribution is asymmetric. The orange plot which is the PDF for a normal distribution does not align to the histogram. Also, Microsoft PowerPoint was used to superimpose a possible PDF that better aligns to the histogram, refer to the red dashed line/plot.

The MVFOSM method is unsuitable for estimating the tail probabilities for both of these responses since they are not normally distributed. This is evident by both the large skewness values and the deviations of the histograms (blue bars) from the PDF of normal distributions (orange plots).

Example 2 2

Goal: Decide UQ Method

- The goal of this exercise is to detail a procedure to do the following:
 - Determine if the response distributions are normal
 - Decide to use the MVFOSM method for a future UQ and OUU
 - Configure an MSC Nastran SOL 200 optimization assuming the inputs and outputs are deterministic
 - Determine an ideal starting point for a future OUU
 - Identify critical constraints to consider in a future OUU
 - Prepare MSC Nastran bulk data files (BDF) for future OUU configuration

Contact me

- Nastran SOL 200 training
- Nastran SOL 200 questions
- Structural or mechanical optimization questions
- Access to the SOL 200 Web App

christian@ the-engineering-lab.com

Tutorial

Questions? Email: christian@ the-engineering-lab.com

Tutorial Overview

- 1. Start with bulk data files
- 2. Use the SOL 200 Web App to:
 - Confirm the responses have near normal (Gaussian) distributions
 - Configure the bulk data files to output sensitivities/gradients

Special Topics Covered

Uncertainty Quantification (UQ) Method Selection - Sandia Dakota supports multiple UQ methods, each with a different level of computational cost, e.g. polynomial chaos, stochastic collocation, etc. Many of these UQ methods are limited by the curse of dimensionality, so problems with 1-10 variables, or parameters, are practical and larger problems are impractical. For large structural systems, there is a need to consider problems involving dozens or hundreds of variables and constraints. The mean value first-order second-moment (MVFOSM) method is one of the least computationally expensive UQ methods and requires only one black box function evaluation to compute the responses and gradients and derive the mean, standard deviation and tail probabilities for each response. The MVFOSM method does not apply to every response and is limited to responses with normal distributions and responses where gradients are available. This tutorial details a process to qualify problems for the MVFOSM method. If the MVFOSM method may be used, it will significantly reduce the computational cost for UQ and OUU.

SOL 200 Web App Capabilities

Compatibility

- Google Chrome, Mozilla Firefox or Microsoft Edge Installable on a company laptop, workstation or
- Windows and Red Hat Linux

server. All data remains within your company.

The Post-processor Web App and HDF5 Explorer are free to MSC Nastran users.

Benefits

entries.

- REAL TIME error detection. 200+
- error validations.
- REALT TIME creation of bulk data •
- Web browser accessible
- Free Post-processor web apps
 - +80 tutorials

Web Apps

Web Apps for MSC Nastran SOL 200 Pre/post for MSC Nastran SOL 200. Support for size, topology, topometry, topography, multi-model optimization.

Shape Optimization Web App Use a web application to configure and perform shape optimization.

Machine Learning Web App Bayesian Optimization for nonlinear response optimization (SOL 400)

Remote Execution Web App Run MSC Nastran jobs on remote Linux or Windows systems available on the local network

PBMSECT Web App Generate PBMSECT and PBRSECT entries graphically

Dynamic Loads Web App Generate RLOAD1, RLOAD2 and DLOAD entries graphically

Ply Shape Optimization Web App Optimize composite ply drop-off locations, and generate new PCOMPG entries

Stacking Sequence Web App Optimize the stacking sequence of composite laminate plies

HDF5 Explorer Web App Create graphs (XY plots) using data from the H5 file

Before Starting

1. Ensure the Downloads directory is empty in order to prevent confusion with other files

Questions? Email: christian@ the-engineering-lab.com

The Engineering Lab

Go to the User's Guide

1. Click on the indicated link

• The necessary BDF files for this tutorial are available in the Tutorials section of the User's Guide.

Select a web app to begin Before After Optimization for SOL 200 Multi Model Optimization Machine Learning | Parameter HDF5 Explorer Viewer Study Tutorials and User's Guide (1)Full list of web apps

SOL 200 Web App

Questions? Email: christian@ the-engineering-lab.com

Obtain Starting Files

- 1. Find the indicated example
- 2. Click Link
- 3. The starting file has been downloaded

Optimization Under Uncertainty - 3 Bar Truss, Part 1 of 2

There are many methods available for uncertainty quantification to approximate statistics such as mean, standard deviation and tail probabilities of stochastic responses. Each method has its own computational cost. During an optimization under uncertainty (OUU), an uncertainty quantification (UQ) is performed frequently. If the cost of each UQ is high, the OUU's computational costs will also be prohibitively high.

The mean value first-order second-moment (MVFOSM) method is the one of the least expensive UQ methods and

Diskn Sensitvities

Obtain Starting Files

- 1. Right click on the zip file
- 2. Select Extract All...
- 3. Click Extract
- 4. The starting files are now available in a folder

Questions? Email: christian@ the-engineering-lab.com

Create the Starting H5 File

(1

MSC Nastran

A starting H5 file must be created. This H5 file will be used to configure the responses later on.

- 1. Double click the MSC Nastran desktop shortcut
- Navigate to the directory named 1_starting_files_part_a
- 3. Select the indicated file
- 4. Click Open
- 5. Click Run
- 6. The starting H5 file is created

Na Select MSC.NASTRAN I	nput File	2 • • Search 1_starting_files_	 part P
Organize 👻 New fo	older	₩ •	
🔆 Favorites	 Name 	Date modified	Туре
🧮 Desktop	🔐 model.bdf 3	11/16/2024 7:11 PM	Notepad+
🗼 Downloads			
🖳 Recent Places	=		
词 Libraries			
Documents			
🌙 Music			
Pictures			
🛃 Videos			
💶 Computer	II	I	Þ
Fil	e name: model.bdf	✓ Input Files (*.bdf;*.dat)	•
		4 Open 🖵 Can	icel

MSC/NASTRAN Command Information
MSC/NASTRAN Input File
C:\Users\caparici\Downloads\1_starting_files\1_starting_files_pa
File...
Optional keywords
Run
Cancel
Clear

Use the same MSC Nastran version throughout this exercise

The following applies if you have multiple versions of MSC Nastran installed.

To ensure compatibility, <u>use the same MSC Nastran version throughout this exercise</u>. For example, scenario 1 is OK but scenario 2 is NOT OK.

- Scenario 1 OK
 - MSC Nastran 2021 is used to create the starting H5 file.
 - MSC Nastran 2021 is used for each run during Machine Learning or Parameter study.
- Scenario 2 NOT OK
 - MSC Nastran 2018.2 is used to create the starting H5 file.
 - MSC Nastran 2021 is used for each run during Machine Learning or Parameter study.

Using the same MSC Nastran version is critical for consistent response extraction from the H5 file. A response configured for Nastran version X may not match in Nastran version Y, which leads to unsuccessful response extraction from the H5 files. The goal is to make sure all H5 files generated are from the same MSC Nastran version.

Overview

Part A – Uncertainty Quantification and Confirming Responses Are Normal (Gaussian)

 In part A, the response distributions are confirmed to have near normal distributions. Also, the responses are supported by MSC Nastran SOL 200, so the SOL 200 procedure is used in part C to output the gradients. Since the distributions are normal and gradients are available, the MVFOSM method may be used for UQ or OUU.

Part B – Performing a Preliminary Optimization with Deterministic Inputs, and Screening Constraints

- An MSC Nastran SOL 200 optimization is performed to determine a starting point for a future OUU.
- The number of constraints is reduced by only considering the most critical, active or violated constrains found during a SOL 200 optimization.

Part C – Preparing MSC Nastran Bulk Data Files to Output Gradients for Optimization Under Uncertainty

- The bulk data files of the 3-bar truss are configured for a sensitivity analysis, which will output gradients necessary in a future UQ or OUU.
 - The bounds on the DESVAR entries are removed.
 - The procedure is changed from a local optimization to a sensitivity analysis.
 - The DSCREEN entries are modified to output at gradients for at most 100 responses for each response type.
 - A test run is performed to ensure the bulk data files are free from errors and sensitivities/gradients are output.

Part A – Uncertainty Quantification and Confirming Responses Are Normal (Gaussian)

Uncertainty Quantification Problem Statement

Open the Correct Page

1. Click on the indicated link

The Engineering Lab

Questions? Email: christian@ the-engineering-lab.com

20

Select BDF Files

- 1. Click Select files
- 2. Select the indicated file
- 3. Click Open
- 4. Click Upload files

 When starting the procedure, all the necessary BDF, or DAT, files must be collected and uploaded together. Relevant INCLUDE files must also be collected and uploaded. < >

Select BDF Files

Parameters

- 1. Set the following fields as parameters
 - x1: Initial value, field 4, of DESVAR 100001
 - x2: Initial value, field 4, of DESVAR 100002
- 2. Two new variables should be listed

SOL 200 Web App - Machine Learning Parameters Samples Responses Download Results Settings User's Guide Home

Select Parameters

Configure Parameters

Responses

- 1. Click Responses
- 2. Click Select files
- 3. Select the indicated file
- 4. Click Open
- 5. Click Upload files
- On this page, the H5 file is uploaded to the web app.

Adjust the Column Width

- Description of the set of the
- Optional Use the indicated buttons to adjust the width of the column Select Dataset

 IMPORTANT! This image is not meant to match exactly what you see in your view. The text in this image is expected to be different from your view. The purpose of this page and image is to demonstrate how to increase the width of the indicated sections.

Select Responses to Monitor	SOL 200 Web App - Maci	hine Learning	Parameter	rs Samples	Responses	Download	Results							Settin	gs User's Guide F	lome
Select Dataset Acquired Dataset If Horshow Columns Test Filters If Horshow Columns <	Select Responses	s to Monito	or		Sessi	on ID: 3981	HDF5	→	View F	Respo	onses	to Moni	tor)>
select Dataset Acquired Dataset In Reset Filters I							/		Monitored	l Respon	ises		Hide/Shov	v Columns 🔻 F	Reset Filters 🛃 Download CS	3∨
ID MO S MX XX Delete Label Status Objective Bound cycle (SOL 200 only) SOL 200 Web App - Machine Learning Parameters Samples Responses Download Reselfiters View Responses to Monitor Select Dataset Acquired Dataset In Reselfiters View Responses to Monitor Monitor the FINAL design Select Dataset Acquired Dataset In Reselfiters Monitored Responses Monitor the FINAL design Delete Label Status Objective Bound Course Upper	Select Dataset	NODAL/GRID_WEIG	SET GHT - 1		II Res	set Filters	╘┍╷╽								Monitor the response	9
SOL 200 Web App - Machine Learning Parameters Samples Responses Download Res ^k its Settings User's Guide Hor Select Responses to Monitor Select Dataset Acquired Dataset Acquire		ID	мо	s	МХ	XX			Delete	Label	Status	Objective	Lower Bound	Upper Bound	of the FINAL design cycle (SOL 200 only)	1
SOL 200 Web App - Machine Learning Parameters Samples Responses Download Reskits Settings User's Guide Hor Select Responses to Monitor Session ID: 3981 # HDF5 View Responses to Monitor Session ID: 3981 # HDF5 View Responses to Monitor Select Dataset Acquired D	1 1								×	r1	0	~	Lower	Upper	~	-
Select Responses to Monitor Session D: 3981 # HDF5 View Responses to Monitor Select Dataset Acquired Dataset NODAL/GRD_WEIGHT - 1 NODAL/GRD_WEIGHT -	SOL 200 Web App - Mac	hine Learning	Parameter	rs Samples	Responses	Download	Results							Setting	gs User's Guide H	lorne
Select Dataset Acquired Dataset NODAL/GRID_WEIGHT - 1 Acquired Dataset NODAL/GRID_WEIGHT - 1 Acquired Dataset Acquired Dataset Acquired Dataset Acquired Dataset Nodal/GRID_WEIGHT - 1 Acquired Dataset Acquired Dataset <th>Select Response</th> <th>s to Monito</th> <th>or</th> <th></th> <th></th> <th>Ses</th> <th>sion ID: 3981</th> <th>HDF5</th> <th>View F</th> <th>Respo</th> <th>onses</th> <th>to Moni</th> <th>tor</th> <th></th> <th>٢</th> <th></th>	Select Response	s to Monito	or			Ses	sion ID: 3981	HDF5	View F	Respo	onses	to Moni	tor		٢	
Monitor the response -+DMOS	Select Dataset		Acquired Dat	taset		ս	Reset Filters	< >	Monitored	Respon	ises		II Hide/Show	/ Columns 🔻 R	leset Filters 🛃 Download CS	V
Delete Label Status Objective Bound Opper Cycle (SOL 200 only) Image: Status <		^			— — S— —	— — MX — -	- xx						Lower	Upper	Monitor the response	
× r1 O Lower Upper V		-							Delete	Label	Status	Objective	Bound	Bound	cycle (SOL 200 only)	
	'	li							×	r1	0	~	Lower	Upper	~	

Select Responses

- 1. Select the following dataset: NODAL/GRID WEIGHT
- 2. Select the indicated cell
- 3. The following responses have been created: r1

Questions? Email: christian@ the-engineering-lab.com

Select Responses

- 1. Select the following dataset: ELEMENTAL/STRESS/ROD
- 2. Select the indicated cells
- 3. The following responses have been created: r2, r3, r4, r5, r6, r7

Dataset	Acquired Datas	et SS/ROD - 1, 2, 3			, lı Res	et Filters	< >	Monitored	Responses	5	Hide/Sho	w Columns 🔻	Reset Filters
AL/DISPLACEMENT	EID	Α	MSA	т	MST	SAMPLE	DOMAIN_I					Lower	Upper
								Delete	Label	Status	Objective	Bound	Bound
y Entities	Element identification number	Axial stress	Axial Safety Margin*	Total stress	Margin of Safety in Tension	Name of H5 File**	Domain identifier		r1 r2 r3 r4				
identification number (EID) s: 1, 2, 3, etc.	1 Å 2 3					model		×	r1	0	~	Lower	Upper
o Execute	-					-	3) (🔳	r2	0	~	Lower	Upper
	1	13530.0968	5e-324	0	5e-324	model	2		r3	0	~	Lower	Upper
	2	4432.77675	5e-324	0	5e-324	model	2		10	•			oppor
ire Dataset	3	-9097.32012	5e-324	0	5e-324	model	2	×	r4	0	~	Lower	Upper
	1	-9097.32012	5e-324	0	5e-324	model	3	×	r5	0	~	Lower	Upper
quisition complete and	2	4432.77675	5e-324	0	5e-324	model	3	_					
cccostar		40500.0000	E- 004	0	50 224	model	0	×	r6	0	~	Lower	Upper

Results

SOL 200 Web App - Machine Learning Parameters Samples Responses Download

: >

5 10 20 30 50 100

Select Responses

- 1. Select the following dataset: NODAL/DISPLACEMENT
- 2. Select the indicated cells
- 3. The following responses have been created: r8, r9, r10, r11

Select Dataset		aset			II Res	et Filters
NODAL/GRID_WEIGHT NODAL/SPC_FORCE		X	Y	Z	RX	RY
Specify Entities	Grid identifier	X component	Y component	Z component	RX component	RY compone
1, 2, 3, 4 Grid identifier (ID) Examples: 1, 2, 3, etc.	1 2 3 4					
Auto Execute	1	0	0	0	0	0
	2	0	0	0	0	0
Acquire Dataset	3	0	0	0	0	0
	4	0.02262741	-0.00443277	0	0	0
 Acquisition complete and successful 	1	0	0	0	0	0
	2 2	O	0	0	0	0
	3	0	0	0	0	0
	4	-0.02262741	-0.00443277	0	0	0
	4					

SOL 200 Web App - Machine Learning Parameters Samples Responses Download Results

View Responses to Monitor

Мо	nitored	Responses		اء <u>ا</u>	Hide/	Show Columns	▼ Reset Filters	
	Delete	Label	Status	Object	tive	Lower Bound	Upper Bound	Monitor the of the FINA cycle (SOL :
		r1 r2 r3 r4 r5						
	×	r1	0		~	Lower	Upper	
	×	r 2	0		~	Lower	Upper	
	×	r3	٥		~	Lower	Upper	
	×	r4	٥		~	Lower	Upper	
	×	r5	٥		~	Lower	Upper	
	×	r6	٥		~	Lower	Upper	
	×	r7	٥		~	Lower	Upper	
\square	×	r8	٥		~	Lower	Upper	
	×	r9	0		*	Lower	Upper	
	×	r10	0		*	Lower	Upper	
	×	r11	0		~	Lower	Upper	

Questions? Email: christian@ the-engineering-lab.com

Settings

1. Click Settings

2. Set Procedure to Dakota

SOL 200 Web App - Machine Learning	Parameters	Responses	Dakota	Download	Results	Settings User's Guide	Home
							< >
Settings			Settings	Output			
Procedure Dakota 2		~	procedure dakota		SETTINGS OU	TPUT =======	
							*

Dakota

- 1. Click Dakota
- 2. Set UQ Method to Sampling

SOL 200 W	/eb App -	Machine	Learning	Parameters	Responses	Dakota	Download	Results
Wizard	Method	Model	Inspection					
Wizard								
						• UQ • OUI	- Uncertainty Q J - Optimizatior	uantification 1 Under Uncertainty
UQ Method					OUU Approach			
Sampling	2			~	Select Optio)n		~

Dakota -Uncertainty Quantification (UQ)

- 1. Scroll to section Uncertainty Quantification
- 2. Set both distributions to Lognormal Uncertain
- 3. Set both standard deviations to 0.04
- 4. For this example, bounds are not used. Ensure the bounds are blank.

- Variables that are normally distributed allow for negative values. This is problematic if the variable should always be positive. In this example, the cross sectional area is varied and should always be positive, else if the area is negative, the FEA solver will fail. A lognormal distribution allows for only positive values. The variables in this exercise are configured as having a lognormal distribution.
- The standard deviation is often determined via testing or provided by the supplier or manufacturer.
- In this exercise, bounds are not provided for the uncertain variables. If bounds are provided, the final LHS considers points only within the bounds.

Uncertainty Quantification 1

Configure UQ Variables

Uncertainty Quantification

- Click Method
- 2. Set the keyword samples to 50
 - The uncertainty quantification will use 50 MSC Nastran runs
 - Why 50 runs? The gold rule with sampling is "more runs are better as long as budget allows for it." A convergence study was performed for 10, 20, 40, and 80 runs and revealed after 40 runs, the mean, standard deviation and other statistics converge. 40 runs could be selected, but if resources allow for more runs, use more runs. 50 runs were selected for this exercise since resources allowed for additional runs.
- Refer to the Dakota Reference Manual for a description of each keyword, e.g. model_pointer, distribution, fixed_seed, seed,

OL 200 Web App - Machine Learning Parameters Responses	Dakota Downloa	ad Results	Settings	User's Guide	Home
Wizard Method Model Inspection					
ethod					
 method o id_method 			[]	■ Display Selected K	eywords
UQ					
• final_solutions		refinement_samples			
 Method (Iterative Algorithm) (Group 1) 		 reliability_levels 			
sampling		response_levels			
 model_pointer 		• 🗌 rng			
 Dackfill 		 sample_type 			
 d_optimal 		- 🗹 Sample Type (0	Group 1)		
- 🗹 distribution		lhs			
■ ✓ Distribution Type (CDF/CCDF) (Group 1)					
complementary		samples			
 final moments 		50	2		
• V fixed_seed		12347			
 gen_reliability_levels 		variance_based_deco	omp		
principal components		wilks			
	• 🗌 outp	ut			

Technology Partner

Download

1. Click Download

2. Click Download BDF Files

Start MSC Nastran

A new .zip file has been downloaded

- 1. Right click on the file
- 2. Click Extract All
- 3. Click Extract on the following window
- Always extract the contents of the ZIP file to a new, empty folder.

🔾 🗢 🚺 🕨 albatross	► Downloads ►	✓ 4 Searce	h Downloads		٩		
Organize 🔻 😭 Open	✓ Share with ▼	New folder		≡ - 🔟	0		
☆ Favorites	Name	*	Date mo	dified	Туре		
E Desktop	1_starting_files		11/26/20	20 10:57	File folde		
Downloads	1_starting_files.zip)	11/26/20	20 10:35	Compres		
🖳 Recent Places	🔒 nastran_working_	directory.zip	11/26/20	20 11-25	Compre		
i OneDrive	(1)		Open Open in new v	vindow			
詞 Libraries		2	Extract All				
Documents			Edit with Note	pad++			
J Music			Open with				
Pictures			Share with		_		
Mideos			Restore previo	us versions			
🤣 Homegroup			Send to		÷		
Computer			Cut				
1% computer			Сору				
📬 Network			Create shortcu	ıt			
			Delete				
	•		Rename				×
nastran_workin	g_directory.zip Date m	odified: 11/26/2	Properties	🕞 🚹 Ext	ract Com	pressed (Zipped) Folders	
Compressed (zip	oped) Folder	Size: 112 MB					
				Selec	t a Desi	Ination and Extract Files	
				Files wi	ll be extra	icted to this folder:	
				C:\Us	ers\albatr	oss\Downloads\nastran_working_directory Browse	
				Sho	w extracte	d files when complete	
							_
						3 Extract Cancel	

Start Desktop App

- 1. Inside of the new folder, double click on Start Desktop App
- Click Open, Run or Allow Access on any subsequent windows
- 3. The Desktop App will now start
- One can run the Nastran job on a remote machine as follows: 1) Copy the BDF files and the INCLUDE files to a remote machine. 2) Run the MSC Nastran job on the remote machine. 3) After completion, copy the BDF, F06, LOG, H5 files to the local machine. 4) Click "Start Desktop App" to display the results.

Using Linux?

Follow these instructions: 1) Open Terminal 2) Navigate to the nastran_working_directory cd ./nastran working directory 3) Use this command to start the process ./Start MSC Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x ./nastran_working_directory

Questions? Email: christian@ the-engineering-lab.com

echnology Partner

Open

x

Cancel

Status

 While MSC Nastran is running, a status page will show the current state of MSC Nastran

SOL 200 Web App - Status

Status

Name	Status of Job	Design Cycle	RUN TERMINATED DUE TO
model.bdf	Running	None	

MSC Nastran

n Python

UQ Completion

1. The UQ is complete when the indicated web apps are opened.

Machine Learning × Status	× Dakota Results	× HDF5 Explorer	× +
\leftrightarrow \rightarrow C (i) localhost:8080/optimization/hdf5/?room=79445			
SOL 200 Web App - HDF5 Explorer Acquire Dataset	Plots Browser Combine Plots	Last Plot Added	

3

Statistics based on 50 samples

2

Sample	e moment statistics for each response f	unction	(5)	🛃 Download CSV		
4	Mean	Standard Deviation	Skewness	Kurtosis		
r1	4.8279590943e+00	1.1754839330e-01	5.3215577792e-02	-4.1072200142e-01		
r2	1.3550873230e+04	4.7109459188e+02	1.5126416459e-01	-2.7255138682e-01		
r3	4.4340359141e+03	7.8657599827e+01	-9.4060255845e-02	-7.1675181810e-01		
r4	-9.1168373160e+03	4.2713590041e+02	-1.5808602311e-01	-2.5354362937e-01		
r5	-9.1168373160e+03	4.2713590041e+02	-1.5808602311e-01	-2.5354362937e-01		
r6	4.4340359141e+03	7.8657599827e+01	-9.4060255845e-02	-7.1675181810e-01		
r7	1.3550873230e+04	4.7109459188e+02	1.5126416459e-01	-2.7255138682e-01		
r8	2.2667710546e-02	8.9585901001e-04	1.5733778402e-01	-2.5950843535e-01		
r9	-4.4340359141e-03	7.8657599827e-05	9.4060255845e-02	-7.1675181810e-01		
r10	-2.2667710546e-02	8.9585901001e-04	-1.5733778402e-01	-2.5950843535e-01		
r11	-4.4340359141e-03	7.8657599827e-05	9.4060255845e-02	-7.1675181810e-01		

(1) File: dakota.out

<<<< Function evaluation summary (UQ_I): 50 total (50 new, 0 duplicate)

Statistics based on 50 samples:

Sample moment statistics for each response function:

	Mean	Std Dev	Skewness	Kurtosis
r1	4.8279590943e+00	1.1754839330e-01	5.3215577792e-02	-4.1072200142e-01
r2	1.3550873230e+04	4.7109459188e+02	1.5126416459e-01	-2.7255138682e-01
r3	4.4340359141e+03	7.8657599827e+01	-9.4060255845e-02	-7.1675181810e-01

Questions? Email: christian@ the-engineering-lab.com

UQ Results

- The results of the uncertainty quantification are found in file dakota.out. Note that the mean, standard deviation, skewness and kurtosis for each responses is listed.
- Select the window or tab that displays the Dakota Results web app. This web app displays some of the results found in the Dakota output file dakota.out.
- B. Click Tables
- 4. The same results found in the file dakota.out are displayed in the web app
- 5. The skewness is a measure of the distribution's symmetry. A normal distribution has a skewness of zero, i.e. the distribution is symmetric. If the skewness is reasonably small, the distribution is very close to a normal distribution. From experience, skewness values within the range of -0.5 to +0.5 are indication of a near normal distribution.

UQ Results

1. Click Histograms

- 2. A histogram for each response is displayed
- 3. Recall the skewness for each response
- 4. For response r1, the skewness is 0.0532 and is very small, indicating the response's distribution is nearly symmetric and is a near normal distribution.
- 5. For response r2, the skewness is 0.151. This skewness value is deemed reasonably small, so the distribution is considered a near normal distribution.
- 6. The probability density functions (PDF), colored in orange, are built using a normal distribution with the mean and standard deviation given in the Dakota results file. The orange plot is NOT the response's true distribution and is used for comparison only. The blue bars of the histogram represent the true distribution of the response. If the histogram and PDF plot align, this is indication the response's distribution is nearly normal.

There are 2 methods for deeming a response's distribution is nearly normal: the skewness values are small and comparing the histogram with a PDF of a normal distribution.

Sample moment statistics for each response function

	Mean	Skewness		
r1	4.8279590943e+00	1.1754839330e-01	5.3215577792e-02	
r2	1.3550873230e+04	4.7109459188e+02	1.5126416459e-01	
r3	4.4340359141e+03	7.8657599827e+01	-9.4060255845e-02	

UQ Results

1. Inspection of the other skewness values and histograms indicates the response distributions are nearly normal. This is evidence the MVFOSM method is appropriate for estimating tail probabilities for each response.

Questions? Email: christian@ the-engineering-lab.com

Examples of Nonnormal Distributions

The examples shown on this page are for responses from other structural models and <u>not</u> the 3-bar truss.

- 1. For example 1, the response's skewness value is 1.0035985638e+00. This is a significantly large skewness value and indicates the distribution is highly asymmetric. A look at the histogram confirms the distribution is asymmetric. The orange plot which is the PDF for a normal distribution does not align to the histogram. Also, Microsoft PowerPoint was used to superimpose a possible PDF that better aligns to the histogram, refer to the red dashed line/plot. The actual distribution is likely a bi-modal distribution, not a normal distribution.
- 2. For example 2, the response's skewness value is -7.0504626153e+00. This is a significantly large skewness value and indicates the distribution is highly asymmetric. A look at the histogram confirms the distribution is asymmetric. The orange plot which is the PDF for a normal distribution does not align to the histogram. Also, Microsoft PowerPoint was used to superimpose a possible PDF that better aligns to the histogram, refer to the red dashed line/plot.

The MVFOSM method is unsuitable for estimating the tail probabilities for both of these responses since they are not normally distributed. This is evident by both the large skewness values and the deviations of the histograms (blue bars) from the PDF of normal distributions (orange plots).

Example 2 2

Can MVFOSM be used for uncertainty quantification?

- For the MVFOSM method to yield good approximations of tail probabilities, the response's distributions must be normal or nearly normal. Also, gradients must be available.
 - As confirmed in the previous steps, the response distributions are nearly normal.
 - Also, the weight, displacement and stress responses are response types supported by MSC Nastran SOL 200. Since MSC Nastran SOL 200 outputs sensitivities/gradients, gradients are available for the responses of interest.
- The answer to the original question is as follows: <u>Yes,</u> the MVFOSM method may be used for UQ and OUU.
- If the answer is no, then one of the other UQ methods available in Sandia Dakota should be considered, e.g. polynomial chaos, stochastic collocation, etc. Also, the

other UQ methods are greatly limited by the curse of dimensionality, so problems within 1-10 parameters are practical. Problems with more than 10 parameters may require up to thousands of FEA runs and are impractical. The true cost will vary depending on the UQ method and number of parameters and responses.

The MVFOSM method is significantly less computationally expensive and can address higher dimension problems, so take advantage of the MVFOSM method when possible. In a separate tutorial, a UQ and OUU involving +50 parameters is optimized with approximately 300 FEA runs. While some might call this costly, it is actually not considering other UQ methods during OUU might require +5,000 FEA runs.

Another Comment

Does the MVFOSM method work well for nonlinear response functions? It depends.

Consider 2 examples.

- In example 1, the x1 variable's mean is 1.0 and the standard deviation is 0.01.
- In example 2, the x1 variable's mean is 1.0 and the standard deviation is 0.1. Note the standard deviation is significantly larger.

The MVFOSM method is based on the assumption the response function can be approximated with a first-order Taylor series that includes gradients. It is from the first-order Taylor series that the mean and standard deviation are approximated.

- 1. In example 1, since the variable's standard deviation is small enough, the first-order Taylor series is fairly accurate in approximating the true response function. While the response function is globally nonlinear, UQ using the MVFOSM method is expected to yield accurate tail probabilities in the local region, or the region within 3 standard deviations.
- 2. In example 2, if the standard deviations are large enough, the first-order Taylor series poorly approximates the true response function. If the MVFOSM method is used when the variable's standard deviations are large, MVFOSM is expected to yield inaccurate tail probabilities.

To answer the original question, MVFOSM works well when the variable's standard deviations are small enough such that a first-order Taylor series can approximate the true response function.

+3σ

True Response Function

Approximate Response Function (Taylor Series)

Part B – Performing a Preliminary Optimization with Deterministic Inputs, and Screening Constraints

Optimization Problem Statement

Note

Since the MVFOSM method may be used, gradients must be available. MSC Nastran SOL 200 has a sensitivity analysis capability that outputs gradients. The bulk data files must be configured for MSC Nastran SOL 200. Variables, objective and constraints must be defined via entries DESVAR, DVPREL1, DRESP1, DCONSTR, etc. This has already been done. 6

- Navigate to directory 1_starting_files_part_b
- 2. Open file design_model.bdf in a text editor
- 3. Inspection of the file shows entries for SOL 200 have already been configured., including entries for the variables, objective and constraints.

Configuring bulk data files for MSC Nastran SOL 200 has been extensively detailed in various tutorials found in the User's Guide. New users to MSC Nastran SOL 200 are referred to the extensive set of tutorials found in the User's Guide.

	\Users\caparici\Downloads\1_starting_files\1_starti	ng_files_part_b\design_model.bdf - Notepad++	
	Edit Search View Encoding Language Se	ttings Tools Macro Run Plugins Window	? + ▼ ×
→ → → ↓ ≪ 1_star → 1_starting_files_part_b ↓ → ↓		## 🍇 🔍 🔍 🕵 🖾 🎫 11 🎼 🖉 💹	
Organize 🔻 Include in library 👻 Share with 💌	sign_model.bdf 🔀	*****	
Favorites	2	Design Model	• • • • • • •
Downloads	5	Design Variables - Type 1	E
Recent Places and model.f06	\$ 1 2 3 \$ 2 5 5 \$ 2 5 \$ 2 5 \$ 2 5 \$ 2 5 5 \$ 2 5 5 5 \$ 2 5 5 5 5 5 5 5	4 5 6 7 ID PNAME PMIN PMAX	8 9 10 C0
Documents	DVPREL1 1000001 PROD 1 100001 1.0 DVPREL1 1000002 PROD 1	1 A 2 A	
3 items	100002 1.0 \$ 1 1 2 3 1 \$ desvar 10 Label X desvar 100001 x1 1	4 5 6 7 INIT XLB XUB DELXV .0 .01 100.	8 9 10 DDVAL
	DESVAR 100002 x2 2 \$ 1 2 3 1 \$ DOVAL 1D DDVAL1 1	.0 .01 100. <u>4 5 6</u> 7 DVAL2 DDVAL3 DDVAL4 DDVAL5	8 9 10 DDVAL6 DDVAL7
	\$ 1 2 3 5 \$DLINK ID DDVID C	4 5 6 7 0 CMULT IDV1 C1	8 9 10 IDV2 C2
	\$ \$ 1 2 3	4 5 6 7	8 9 10
	\$ DVPREL2 ID TYPE F 2 \$ 1 1 2 1 3 1 3 \$ DEQATN EQID	ID PNAME PMIN PMAX 4 5 6 7 EQUATION	EQID 8 9 10
	ș ș		
	Define length : 4,917 lines : 98 Ln	:93 Col : 1 Pos : 4,657 Unix (LF) UTF-8 INS

Optimization Results

After the analysis model is configured for SOL 200, the optimization is performed for two reasons.

- 1. Determine a starting point for the OUU.
- 2. Screen constraints, i.e. reduce the number of constraints for the OUU.

When the input variables are certain, or deterministic, a traditional optimization with MSC Nastran SOL 200 may be performed. The solution from this optimization is termed the *SOL 200 solution*.

From experience, it is found the OUU solution is often near the SOL 200 solution. If the OUU starts at the initial design, the optimizer has to travel further and takes longer to converge. If the OUU starts at or near the SOL 200 solution, the optimizer travels less and converges faster to the OUU solution. Starting the OUU from the SOL 200 solution helps reduce the computational cost associated with OUU.

200 solution

Determine a starting point for the OUU

- 1. The SOL 200 optimization has already been performed and results are contained in file model.f06. Open this file in a text editor and navigate to the end of the file where the results of the optimization are visible.
- 2. The SOL 200 solution for variables x1 and x2 are recorded and will be used as the starting point for a future OUU.
 - x1 = 8.3724E-1
 - x2 = 3.2830E-1

	🗾 Ci	Users	caparici	\Download
~~~	File	Edit	Search	View E
🕞 💭 🗢 📙 « 1_star 🕨 1_starting_files_part_b 🛛 📼	6			, 🔓 🖨
	📄 ma	del.f06	×	
Organize  Include in library  Share with	225	9		BASEI
	226	0	0	
A - Name	226	1		
X Favorites	226	2		
🔲 Deskton 🗧 🔛 design model hdf	226	3	IN	FERNAL
	226	4	D	V. ID.
📕 Downloads 🚽 📓 model.bdf	226	5		
Becont Diacos	220	7		1
model.tvo (1)	226	8		2
	226	9	IN	TERNAL
Contraction (Contraction)	227	0	D	V. ID.
	227	1		
Documents	227	2		1
• •	227	3		2
3 itoms	227	4	***	USER 1
5 items	227	5		RUN TH
	227	6	***	USER 1
	227	7	***	USER 1
	227	8	***	USER 1
	227	9	***	USER 1
	228	0	***	USER 1
	228	1		DATA E
	228	2		NAME
	1 2 2 0	-		NAME: C

📔 C:\U	Jsers\a	aparic	i\Downloads\1_	starting_files\1_sta	rting_files_pa	rt_b\model.f0	6 - Note	epad++						- 0	×
File E	dit :	Search	View Encod	ing Language	Settings To	ols Macro	Run	Plugin	s Window	w ?				+	▼ ×
6		6 E	664	h h   > c	iii 🏂	२ २ 🖂		1 G	<b>F </b>	<b>V</b> [	3 🔊 🖬	Image:		a 🛃 🖪	>>
😑 mode	el.f06 [	×													
2259	)		BASELIN	E - 2 CROSS	SECTION	AL AREAS	AS 1	DESI	GN VARI	IABI	JES				*
2260	) (	0													
2261										DES	SIGN VA	RIABLE	HISTORY		
2262	2														
2263	5	IN	TERNAL	EXTERNAL			1								
2264		D	V. ID.	DV. ID.	1	ABEL	1 :	INIT	IAL	:	1	:	2		
2265	6														
2266			1	100001	X1			1.00	00E+00	•	7.119	1E-01 :	7.798	31E-01	
2267			2	100002	X2		1 3	2.00	00E+00	•	1.000	0E+00 :	6.17	/1E-01	
2268															
2269		IN	TERNAL	EXTERNAL DU ID	1	ADDT			~		-			,	
2270	'		v. 1D.	DV. 1D.	I 1	ADEL	l		0	•	/			,	
2271			1 1	100001	I V1			9 35	718-01		8 372	48-01	$\frown$		
2273			21	100002	1 82		1 3	3 34	358-01	1	3 283	0F-01	(2)		
2274		***	USER INFO	ORMATION ME	SSAGE 64	64 (DOM1	2E)		001 01	•	0.200		$\cup$		
2275			RUN TERM	INATED DUE	TO HARD	CONVERGE	NCE 1	TO A	N OPTIN	MUN	AT CYC	LE NUME	BER =	7	
2276	5	***	USER INFO	ORMATION ME	SSAGE 3	(crdb::n	astra	an::	Process	sor	:write	Output)			
2277		***	USER INFO	ORMATION ME	SSAGE (	WRITE DA	TA BI	LOCK	DBCOPI	r, 1	RAILER	[101, 8	3, 7, 2,	1, 0,	0]
2278	1	***	USER INFO	ORMATION ME	SSAGE 3	(crdb::n	astra	an::	Process	sor	:write	Output)			
2279	)	***	USER INFO	ORMATION ME	SSAGE (	WRITE DA	TA BI	LOCK	DESTAR	з, з	RAILER	[102, 2	2, 2, 0,	2, 0,	0]
2280	)	***	USER INFO	ORMATION ME	SSAGE 41	.14 (OUTE	x2)								
2281			DATA BLO	CK R1TABRG	WRITTEN	ON FORT	RAN	UNIT	12	IN	BINARY	(LTLEN	ID) FORMA	T USI	NG
2282	2			101			5				0		0		
2283	5		NAME OF I	DATA BLOCK	WRITTEN	ON FORTR	AN UI	NIT	IS R1TZ	ABRO	3				
2284			(MAXI)	MUM POSSIBL	E FORTRA	N RECORE	SIZ	Е =	13	3107	4 WORD	s.)			



Open the Responses App

1. Click on the indicated link

#### The Engineering Lab



Questions? Email: christian@ the-engineering-lab.com



### Open the Responses App

- 1. Click Results.
- 2. Click Responses(.f06).



#### Select a Results App



Global Optimization (multiopt.log)



Global Optimization Type 2 (.f06)



Local Optimization (.f06)



Parameter Study (.f06)









Topology Viewer (.des)

The Results section contains links to numerous other web application designed for specific applications. For example, if sensitivity analysis is performed, the Sensitivities App can display the results.



### Responses During Optimization

The goal is to identify which responses are critical during the optimization. A response is critical if its constraints are violated or active during the optimization. The same responses will be critical during an OUU.

A new page is open to the Responses web app.

- 1. Click Select files
- Navigate to directory 1_starting_files_part_b
- 3. Select file model.f06
- 4. Click Open
- 5. Click Upload files
- The responses considered during the optimization and listed in the .f06 file are shown in the table
- 7. Click Violated constraints
- Note there are no violated constraints during the optimization, so the table is empty

Upload .f06 File	Open	Search 1_starting_files_p P
1     1. Select files     model.f06       5     2. Upload files	Organize ▼ New folder	BEE ▼ □ Date modified Type 11/16/2024 7:30 PM Notepad+
	File name: model.f06	▼ Notepad++ Document (*.f06) ▼ 4 Open Cancel

#### Responses 7 Reset view Violated constraints Active constraints Maximum constraint for each design cycle 6 Design Response Show More Subcase Normalized Lower Upper Normalized ELEMENT COMPONENT Label \$ Туре Bound Bound Constraint designCycleNumber Cycle Constraint Value ¢ Information ID NO. Search Searc Search Search Searc Search Search Search Search

(8)



SOL 200 Web App - Responses



#### Responses

						Reset view	Violated c	onstraints 💿	Active constrain	ts 👁 Maximum con	straint for ea	ch design cycle
Design Çycle	${\displaystyle \overset{{\rm Subcase}}{\hat{\varphi}}}$	Label ≑	Response Type [≑]	Normalized Constraint	Lower Bound	Value ¢	Upper Bound ≑	Normalized Constraint [≑]	Show More Information	designCycleNumber	ELEMENT ID	COMPONENT NO.
Search	Search	Sea	Search	Search	Sear	Search	Search	Search				
1	1	r2	STRESS		N/A	1.9883E+04	2.0000E+04 A	-5.8502E-03**	<b>—</b> (4)	1	1	2
1	2	r2	STRESS		N/A	1.9883E+04	2.0000E+04 A	-5.8502E-03**		1	3	2
2	1	r2	STRESS		N/A	1.9640E+04	2.0000E+04 A	-1.7978E-02**		2	1	2
2	2	r2	STRESS		N/A	1.9640E+04	2.0000E+04 A	-1.7978E-02**		2	3	2
3	1	r2	STRESS		N/A	1.9934E+04	2.0000E+04 A	-3.2965E-03**		3	1	2
3	2	r2	STRESS		N/A	1.9934E+04	2.0000E+04 A	-3.2965E-03**		3	3	2
4	1	r2	STRESS		N/A	2.0001E+04	2.0000E+04 A	5.1584E-05**		4	1	2
4	2	r2	STRESS		N/A	2.0001E+04	2.0000E+04 A	5.1584E-05**		4	3	2
5	1	r2	STRESS		N/A	2.0009E+04	2.0000E+04 A	4.2618E-04**		5	1	2
5	2	r2	STRESS		N/A	2.0009E+04	2.0000E+04 A	4.2618E-04**		5	3	2
6	1	r2	STRESS		N/A	2.0022E+04	2.0000E+04 A	1.1166E-03**		6	1	2
6	2	r2	STRESS		N/A	2.0022E+04	2.0000E+04 A	1.1166E-03**		6	3	2
FINAL - 7	1	r2	STRESS		N/A	2.0033E+04	2.0000E+04 A	1.6263E-03**		7	1	2
FINAL - 7	2	r2	STRESS		N/A	2.0033E+04	2.0000E+04 A	1.6263E-03**		7	3	2

 $\bigcirc$ 

Screening Responses and Constraints for OUU

- 1. Click Active constraints
- 2. Click the indicated button to display at most 25 rows in the table
- 3. The active constraints correspond to stress responses from subcase 1 and 2
- 4. Click on the indicated blue button to display additional columns

(3)





#### Screening Responses and Constraints for OUU

The OUU may be computationally expensive when hundreds or thousands of constraints are involved. It is important to the reduce the number of constraints involved in an OUU.

- During the SOL 200 optimization, only the stress constraints are active. These constraints will also be active during the OUU. Notice the displacement constraints are absent, indicating the optimizer is nowhere near violating the displacement constraints. The displacement constraints are screened out or ignored during the future OUU.
- The analysis model has truss members 1, 2 and 3, but during the SOL 200 optimization, only the axials stresses for elements 1 and 3 are active. The constraints for axial stress on element 2 are screen out, and only the axial stresses for elements for elements 1 and 3 are considered.
- 3. Lastly, there is another trend worth considering.
  - The stress constraint for element 1 is only active for subcase 1.
  - The stress constraint for element 3 is only active for subcase 2.
- 4. The only constraints considered during the OUU are:
  - The stress constraint for element 1, subcase 1.
  - The stress constraint for element 3. subcase 2.

#### Responses

	<ul> <li>Reset view</li> <li>Violated constraints</li> <li>Active constraints</li> <li>Maximum</li> </ul>					nts   Maximum cons	ximum constraint for each design cycle					
Design Çycle	Subcase	Label ≑	Response Type [⊕]	Normalized Constraint	Lower Bound	Value ¢	Upper Bound ≑	Normalized Constraint [⊕]	Show More Information	designCycleNumber	ELEMENT ID	COMPONENT NO.
Search	Search	Sea	Search	Search	Sear	Search	Search	Search			2	
1	1	r2	STRESS		N/A	1.9883E+04	2.0000E+04 A	-5.8502E-03**		1	1	2
1	2	r2	STRESS		N/A	1.9883E+04	2.0000E+04 A	-5.8502E-03**		1	3	2
2	1	r2	STRESS		N/A	1.9640E+04	2.0000E+04 A	-1.7978E-02**		2	1	2
2	2	r2	STRESS		N/A	1.9640E+04	2.0000E+04 A	-1.7978E-02**		2	3	2
3	1	r2	STRESS		N/A	1.9934E+04	2.0000E+04 A	-3.2965E-03**		3	1	2
3	2	r2	STRESS		N/A	1.9934E+04	2.0000E+04 A	-3.2965E-03**		3	3	2
4	1	r2	STRESS		N/A	2.0001E+04	2.0000E+04 A	5.1584E-05**		4	1	2
4	2	r2	STRESS		N/A	2.0001E+04	2.0000E+04 A	5.1584E-05**		4	3	2
5	1	r2	STRESS		N/A	2.0009E+04	2.0000E+04 A	4.2618E-04**		5	1	2
5	2	r2	STRESS		N/A	2.0009E+04	2.0000E+04 A	4.2618E-04**		5	3	2
6	1	r2	STRESS		N/A	2.0022E+04	2.0000E+04 A	1.1166E-03**		6	1	2
6	2	r2	STRESS		N/A	2.0022E+04	2.0000E+04 A	1.1166E-03**		6	3	2
FINAL - 7	1	r2	STRESS		N/A	2.0033E+04	2.0000E+04 A	1.6263E-03**		7	1	2
FINAL - 7	2	r2	STRESS		N/A	2.0033E+04	2.0000E+04 A	1.6263E-03**		7	3	2





# Part C – Preparing MSC Nastran Bulk Data Files to Output Gradients for Optimization Under Uncertainty



Open the Correct Page

1. Click on the indicated link

#### The Engineering Lab



Questions? Email: christian@ the-engineering-lab.com



54

### Upload BDF Files

Step 1 - Upload .BDF Files

- 1. Click Select Files
- Navigate to directory 1_starting_files_part_b
- 3. Select model.bdf and design_model.bdf
- 4. Click Open
- 5. Click Upload Files

#### 1. Select files 2 files selected 1 Inspecting: 100% 📀 Open X (5) « 1_starting_files + 1_starting_files_part_b (2) + ++ Search 1_starting_... 🔎 Organize 🔻 New folder -2 List of Selected Files . Name Date modified Type ☆ Favorites Nesktop design_model.bdf (3) 11/16/2024 7:11 PM Notepad+ 📔 model.bdf Downloads 11/16/2024 7:11 PM Notepad+ Recent Places 📄 Libraries Documents A Music Pictures Videos π ₹ III Computer Custom Files (*.bdf;*.dat;*.inc;* 🔻 File name: "design_model.bdf" "model.bdf" • Open 4 Cancel **HEXAGON** Questions? Email: christian@ the-engineering-lab.com 55

Technology Partner

### Modify Variables

- Navigate to section Step 2 Adjust design variables
- 2. The design variables configured in a separate tutorial are now available for modification
- Remove all the bounds from each variable
- The DESVAR bounds may conflict with the bounds configured for OUU. For example, if the OUU variable x1 mean is configured between -10 and +10, but the DESVAR entry is configured to have bounds between -5 and +5, when the OUU optimizer submits a variable value x1 mean=+8, the MSC Nastran run will fail because +8 exceeds the bounds on the DESVAR entry. It is for this reason, that the bounds on DESVAR entries should be removed prior to configuring an OUU. Quick reminder that part B is meant to configure bulk data files to output gradients, a formal OUU configuration comes in a future tutorial.

#### SOL 200 Web App - Optimization Upload Variables Objective Constraints Subcases Exporter Results



X Delete Visible Rows

#### + Options

Size

	Label ≑	Status 🌲	Property ≑	Property Description ≑	Entry ≑	Entry ID 💠	Initial Value	Lower Bound	Upper Bound	Allowed Discrete Values
	Search	Search	Search	Search	Search	Search	Search	Search	Search	Search
×	x1	0	A	Area of the rod	PROD	11	1.0	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
×	x2	0	A	Area of the rod	PROD	12	2.0	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,
×	x3	0	A	Area of the rod	PROD	13	1.0	Lower	Upper	Examples: -2.0, 1.0, THRU, 10.0,



3

- 1. Click Settings
- 2. Mark the checkbox labeled Perform Sensitivity Analysis

Sensitivity analysis computes the gradients or partial derivatives of responses with respect to design variables. For example, if the sensitivity of weight with respect to x1 is -200., then a change of 1.0 in x1 yields a change of -200 in the weight. Settings Match Other

1

#### Optimization Settings

Parameter \$	Description 🗢		Configure ≑
Search	Search	Search	
APRCOD	Approximation method to be used		2 - Mixed Method
CONV1	Relative criterion to detect convergence		Enter a positive real number
CONV2	Absolute criterion to detect convergence		Enter a positive real number
DELX	Fractional change allowed in each design variable during any optimization cycle		Enter a positive real number
DESMAX	Maximum number of design cycles to be performed		20
DISBEG	Design cycle number for discrete variable processing initiation		Enter a positive integer
GMAX	Maximum constraint violation allowed at the converged optimum		Enter a positive real number
P1	Print items, e.g. objective, design variables, at every n-th design cycle to the .f06 file		1
P2	Items to be printed to the .f06 file		15 - Print objective, design variab 🗸 🗸

#### Optimization Type

Perform Local Optimization
 Perform Sensitivity Analysis
 Perform Global Optimization
 Perform Global Optimization Type 2
 Perform Parameter Study

Questions? Email: christian@ the-engineering-lab.com



#### SOL 200 Web App - Optimization Upload Variables Objective Constraints Subcases Exporter Results

< >

#### BDF Output - Model

### Export New BDF Files

1. Click Exporter

2. Click Download BDF Files

 When the download button is clicked a new file named "nastran_working_directory" is downloaded. If the file already exists in your local folder, the folder name is appended with a number, e.g. "nastran_working_directory (1).zip"

assign use	rfile = 'optimization_results.csv', status = unknown, mattad unit = 52
\$ 1	
TD MSC DS	
TIME 10	s
SOL 200	
CEND	
TITLE = SY	MMETRIC THREE BAR TRUSS DESIGN OPTIMIZATION - DSOUG1
SUBTITLE =	BASELINE - 2 CROSS SECTIONAL AREAS AS DESIGN VARIABLES
\$ Result 0	lutput
ECHO	= NONE
SPC	= 100
DISPLACEME	NT(SORT1,REAL)=ALL
SPCFORCES(	SORT1,REAL)=ALL
STRESS(SOF	T1,REAL,VONMISES,BILIN)=ALL
\$ Subcases	
DESOB3(	MIN) = 5000000
DSAPRT(	FORMATTED, EXPORT, END=SENS) = ALL
\$ DESGL	8 Slot
SUBCASE 1	
ANALYS1	S = STATICS
DESSUB	= 40000001
\$ DRSP/	N Slot
LABEL =	LOAD CONDITION 1
LOAD =	300
SUBCASE 2	
ANALYS1	S = STATICS
DESSUB	= 40000001

#### Download BDF Files



BDF Output - Design Model

\$*								8
\$*				Dest	ign Model			*
\$*								*
\$*****	*******	*******	******	********		********	**********	******
\$								
\$			0	Design Va	ariables - Type	2.1		
\$								
\$								
\$								
\$								
DVPREI 1	1000001	PROD	11	4				
Diritera	1000001	1.0	**					
DVPREI 1	1000001	PROD	12	A				
	100002	1.0						
DVPREL1	1000003	PROD	13	A				
	100003	1.0						
\$								
\$								
DESVAR	100001	X1	1.0	.01	100.			
DESVAR	100002	х2	2.0	.01	100.			
DESVAR	100003	хЗ	1.0	.01	100.			
\$								
\$								
\$								
P DI TNK	1	100007			100001 1.0			
DETHY	1	100000			100001 1.0			
\$				Design Va	ariables - Type	2		
\$								
\$								
\$								
\$								
\$								
5					abi abi			
2 4				Design	objective			
\$								

Questions? Email: christian@ the-engineering-lab.com



### Perform the Optimization with Nastran SOL 200

A new .zip file has been downloaded

- 1. Right click on the file
- 2. Click Extract All
- 3. Click Extract on the following window
- Always extract the contents of the ZIP file to a new, empty folder.

					×	
🕒 🗢 🚺 🕨 caparici 🕨	Downloads	<b>▼ 4</b> j	Search D	ownloads	٩	
Organize 🔻 🛛 🛜 Open	✓ Share with ▼ New folder				?	
🔆 Favorites	Name	Date modi	fied	Туре		
🧮 Desktop	1_starting_files	11/9/2024	6:31 PM	File fol	der	
〕 Downloads	鷆 nastran_working_directory	11/9/2024	4:51 PM	File fol	der	
📳 Recent Places	鷆 nastran_working_directory (1)	11/9/2024	5:07 PM	File fol	der	
	solution_ws_dsoug1	11/9/2024	5:11 PM	File fol	der	
📜 Libraries	hastran_working_directory (1).zip	0nen	C 3C 014	0	ssed	
Documents	🚹 nastran_working_directory.zip	Open in nousei	ndow		ssed (	
J Music	solution_ws_dsoug1.zip	Open in new wi	nuow		ssed (	
Pictures	(2)	Extract All				
🛃 Videos		Edit with Notep	ad++			
		Open with				
P Computer		Share with				
Local Disk (C:)		Restore previou	s versions	;		
Uownloads (\\VBoxS						
See Maturali		Send to		^		
		Cut				
		Сору				
		Create shortcut				
		Delete				<b>X</b>
	1	Rename	a	1. Extract	Com	unressed (Zinned) Folders
nastran workin	directory (1) zip. Date modified: 11/0				c comp	pressed (Lipped) i olders
Compressed (zip	ped) Folder Size: 23.2 IVID	Properties				
			5	select a	Dest	ination and Extract Files
			F	iles will b	e extra	acted to this folder:
				C:\Users\	capari	ici\Downloads\nastran_working_directory (1)
				Charma		d film where an employ
			Le la	SHOW E	xtracte	ad mes when complete
						3 Extract Cancel



# Update the DSCREEN entries

MSC Nastran SOL 200 will output a finite number of sensitivities or gradients. This is controlled by the DSCREEN entry. When the BDF files are downloaded from the Size web app, the DSCREEN entries are configured to output gradients for at most 10 responses for each response type. For OUU problems that involve hundreds of responses, you will need gradients for more than 10 responses.

- Open the file design_model.bdf in Notepad++
- 2. Use CTRL+ALT and the left mouse button to select only the values 10 for each row simultaneously.
- Replace each value 10 with the value 100. Now gradients will be available for up to 100 responses for each response type.
- 4. Save any edits made to the text file (not shown)

While a future OUU is only considering the responses from elements 1 and 3 (2 responses), this step is not necessary since the DSCREEN entry is already configured to output gradients for at most 10 responses. But this step will be required for OUU with hundreds of responses and constraints, so it was worth mentioning.

#### Before

\$ 1

Ś.

\$ Design Constraint Screening

\$				
DSCREEN	WEIGHT	-10000.	10	(2)
DSCREEN	VOLUME	-10000.	10	
DSCREEN	EIGN	-10000.	10	
DSCREEN	CEIG	-10000.	10	
DSCREEN	FREQ	-10000.	10	
DSCREEN	LAMA	-10000.	10	
DSCREEN	DISP	-10000.	10	
DSCREEN	STRAIN	-10000.	10	
DSCREEN	ESE	-10000.	10	
DSCREEN	STRESS	-10000.	10	
DSCREEN	FORCE	-10000.	10	
DSCREEN	FATIGUE	-10000.	10	
DSCREEN	FRFTG	-10000.	10	
DSCREEN	SPCFORCE	E-10000.	10	
DSCREEN	CSTRAIN	-10000.	10	
DSCREEN	CSTRESS	-10000.	10	
DSCREEN	CFAILURE	E-10000.	10	
DSCREEN	CSTRAT	-10000.	10	
DSCREEN	TOTSE	-10000.	10	
[]				
DSCREEN	STMOND1	-10000.	10	
DSCREEN	MONPNT3	-10000.	10	
DSCREEN	AEMONP1	-10000.	10	
DSCREEN	AEMOND1	-10000.	10	
DSCREEN	TRIM	-10000.	10	
DSCREEN	STABDER	-10000.	10	
DSCREEN	FLUTTER	-10000.	10	
DSCREEN	DIVERG	-10000.	10	
DSCREEN	WMPID	-10000.	10	
DSCREEN	EQUA	-10000.	10	

Dev				
De:				
7 4 2				
DSCREEN	WEIGHT	-10000.	100	(3)
DSCREEN	VOLUME	-10000.	100	
DSCREEN	EIGN	-10000.	100	
DSCREEN	CEIG	-10000.	100	
DSCREEN	FREQ	-10000.	100	
DSCREEN	LAMA	-10000.	100	
DSCREEN	DISP	-10000.	100	
DSCREEN	STRAIN	-10000.	100	
DSCREEN	ESE	-10000.	100	
DSCREEN	STRESS	-10000.	100	
DSCREEN	FORCE	-10000.	100	
DSCREEN	FATIGUE	-10000.	100	
DSCREEN	FRFTG	-10000.	100	
DSCREEN	SPCFORCE	E-10000.	100	
DSCREEN	CSTRAIN	-10000.	100	
DSCREEN	CSTRESS	-10000.	100	
DSCREEN	CFAILURE	E-10000.	100	
DSCREEN	CSTRAT	-10000.	100	
DSCREEN	TOTSE	-10000.	100	
[]				
DSCREEN	STMOND1	-10000.	100	
DSCREEN	MONPNT3	-10000.	100	
DSCREEN	AEMONP1	-10000.	100	
DSCREEN	AEMOND1	-10000.	100	
DSCREEN	TRIM	-10000.	100	
DSCREEN	STABDER	-10000.	100	
DSCREEN	FLUTTER	-10000.	100	
DSCREEN	DIVERG	-10000.	100	
DSCREEN	WMPID	-10000.	100	
DSCREEN	EQUA	-10000.	100	



After

### Sensitivity Analysis Only

A. Open file model.bdf in a text editor. Note the DSPART case control command is present and is configured for a sensitivity analysis only (END=SENS). MSC Nastran SOL 200 is NOT used to perform an optimization. MSC Nastran SOL 200 is only used to output gradients for use in a future OUU.

DESOBJ(MIN) = 8000000
(A) DSAPRT(FORMATTED, EXPORT, END=SENS) = ALL
\$ DESGLB Slot



### Ensure H5 Output is Enabled

A. Inspection of file design_model.bdf shows H5 output is enabled. No modifications are necessary.

The response values and gradients will be stored in the H5 file and will be accessed during the uncertainty quantification or optimization under uncertainty.

B. If H5 output is not enabled, H5 output may be enabled with the following instructions.

Add one of the following entries to the bulk data files.

MDLPRM,HDF5,2

HDF50UT



^B Option 1

MDLPRM HDF5 2

Option 2

HDF50UT



# Next Step

A test sensitivity analysis is performed to ensure the bulk data files run with no error.



#### Perform the Optimization with Nastran SOL 200

- 1. Inside of the new folder, double click on Start MSC Nastran
- Click Open, Run or Allow Access on any subsequent windows
- MSC Nastran will now start
- After a successful run, the results will be automatically displayed as long as the following files are present: BDF, F06 and LOG.
- One can run the Nastran job on a remote machine as follows: 1) Copy the BDF files and the INCLUDE files to a remote machine. 2) Run the MSC Nastran job on the remote machine. 3) After completion, copy the BDF, F06, LOG, H5 files to the local machine. 4) Click "Start MSC Nastran" to display the results.

#### **Using Linux?**

Follow these instructions: 1) Open Terminal 2) Navigate to the nastran working directory cd ./nastran working directory 3) Use this command to start the process ./Start MSC Nastran.sh

In some instances, execute permission must be granted to the directory. Use this command. This command assumes you are one folder level up.

sudo chmod -R u+x ./nastran working directory





Questions? Email: christian@ the-engineering-lab.com



Open

X

Cancel

#### SOL 200 Web App - Status

Status

#### Republic Python MSC Nastran

### Status

1. While MSC Nastran is running, a status page will show the current state of MSC Nastran

Name	Status of Job	Design Cycle	RUN TERMINATED DUE TO
model.bdf	Running	None	

 The status of the MSC Nastran job is reported on the Status page. Note that Windows 7 users will experience a delay in the status updates. All other users of Windows 10 and Red Hat Linux will see immediate status updates.



### Review Optimization Results

After MSC Nastran is successfully complete, the results will be automatically uploaded.

1. If bar charts are displayed, such as the one shown, the sensitivity analysis has been a success. The bulk data files are now configured to output sensitivities for use in a future UQ or OUU.

#### SOL 200 Web App - Sensitivities



*d*r2_{sc1,2,1}/*d*x1 *d*r2_{sc2,2,3}/*d*x1 *d*r2_{sc2,2,1}/*d*x1 *d*r2_{sc1,2,3}/*d*x1 *d*r2_{sc1,2,2}/*d*x2 *d*r2_{sc2,2,2}/*d*x2 *d*r2_{sc1,2,2}/*d*x1 *d*r2_{sc2,2,2}/*d*x1 *d*r2_{sc2,2,2}/*d*x1 *d*r2_{sc2,2,2}/*d*x1 *d*r2_{sc2,2,1}/*d*x2



Questions? Email: christian@ the-engineering-lab.com



Home

66

### Confirm the H5 is Present

As stated earlier, it is essential the H5 file is available. The UQ or OUU procedures will depend on the presence of the H5 file to acquire the necessary responses and gradients.





# Summary

Part A – Uncertainty Quantification and Confirming Responses Are Normal (Gaussian)

 In part A, the response distributions are confirmed to have near normal distributions. Also, the responses are supported by MSC Nastran SOL 200, so the SOL 200 procedure is used in part B to output the gradients. Since the distributions are normal and gradients are available, the MVFOSM method may be used for UQ or OUU.

Part B – Performing a Preliminary Optimization with Deterministic Inputs, and Screening Constraints

- An MSC Nastran SOL 200 optimization is performed to determine a starting point for a future OUU.
- The number of constraints is reduced by only considering the most critical, active or violated constrains found during a SOL 200 optimization.

Part C – Preparing MSC Nastran Bulk Data Files to Output Gradients for Optimization Under Uncertainty

- The bulk data files of the 3-bar truss are configured for a sensitivity analysis, which will output gradients necessary in a future UQ or OUU.
  - The bounds on the DESVAR entries are removed.
  - The procedure is changed from a local optimization to a sensitivity analysis.
  - The DSCREEN entries are modified to output at gradients for at most 100 responses for each response type.
  - A test run is performed to ensure the bulk data files are free from errors and sensitivities/gradients are output.



End of Tutorial

